

US009476040B2

(12) United States Patent

Mackenzie et al.

(10) Patent No.: US 9,476,040 B2

(45) **Date of Patent:** Oct. 25, 2016

(54) PLANTS WITH USEFUL TRAITS AND RELATED METHODS

(75) Inventors: Sally Ann Mackenzie, Lincoln, NE

(US); Roberto De la Rosa Santamaria, Lincoln, NE (US)

(73) Assignee: **BOARD OF REGENTS OF THE**

UNIVERSITY OF NEBRASKA,

Lincoln, NE (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 529 days.

(21) Appl. No.: 13/462,216

(22) Filed: May 2, 2012

(65) Prior Publication Data

US 2012/0284814 A1 Nov. 8, 2012

Related U.S. Application Data

- (60) Provisional application No. 61/481,519, filed on May 2, 2011, provisional application No. 61/540,236, filed on Sep. 28, 2011.
- (51) Int. Cl. C12N 15/82 (2006.01) C12N 15/113 (2010.01) A01H 1/04 (2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2002/0010953 A1	* 1/2002	Vliet 800/317.4
2004/0210962 A1	10/2004	Mackenzie et al.
2006/0248613 A1	* 11/2006	Mackenzie et al 800/287
2014/0157452 A1	6/2014	Mackenzie et al.

FOREIGN PATENT DOCUMENTS

WO 2012/151254 A1 11/2012

OTHER PUBLICATIONS

Sandhu et al., Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants, 104 PNAS, 1766-1770 (2007).*

Boyko et al 2010 (PLOS One 5:3, p. 1-12).*

Molinier et al 2006 (442:31, p. 1046-1049).*

Shedge et al., "Extensive Rearrangement of the Arabidopsis Mitochondrial Genome Elicits Cellular Conditions for Thermotolerance", Plant Physiology, Apr. 2010, pp. 1960-1970, vol. 152, No. 4. Arrieta-Montiel et al., "Diversity of the Arabidopsis Mitochondrial Genome Occurs via Nuclear-Controlled Recombination Activity", Genetics, 2009, pp. 1261-1268, vol. 183.

Davila et al., "Double-Strand Break Repair Processes Drive Evolution of the Mitochondrial Genome in Arabidopsis", BMC Biology: Journal of Biology, 2011, pp. 1-14, vol. 9, No. 64.

Sandhu et al., "Trangenic Induction of Mitochondrial Rearrangements for Cytoplasmic Male Sterility", Proceedings of the National Academy of Sciences, 2007, pp. 1766-1770, vol. 104, No. 6.

Xu et al., "MutS HOMOLOG1 is a Nucleoid Protein that Alters Mitochondrial and Plastid Properties and Plant Responses to High Light", The Plant Cell, 2011, pp. 3428-3441, vol. 23.

Xu et al., "The Chloroplast Triggers Developmental Reprogramming When MUTS HOMOLOG1 is Supressed in Plants", Plant Physiology, 2012, pp. 710-720, vol. 159.

Yang et al., "MSH1-Derived Epigenetic Breeding Potential in Tomato", Plant Physiology Preview, Mar. 3, 2015, 34 pages.

Gao et al., "Analysis of the Leaf Methylomes of Parents and Their Hybrids Provides New Insight Into Hybrid Vigor in Populus Deltoides", BMC Genetics, 2014, 17 pages, vol. 15, Suppl. 1, No. S8

Santamaria et al., "MSH1-Induced Non-Genetic Variation Provides a Source of Phenotypic Diversity in Sorghum Bicolor", PLOS One, Oct. 2014, 8 pages, vol. 9, Issue 10, e108407.

Shen et al., "Genome-Wide Analysis of DNA Methylation and Gene Expression Changes in Two Arabidopsis Ecotypes and Their Reciprocal Hybrids", The Plant Cell, March 212, pp. 875-892, vol. 24. Groszmann et al., "The Role of Epigenetics in Hybrid Vigour", Trends in Genetics, Dec. 2013, pp. 684-690, vol. 29 No. 12.

Greaves et al., "Inheritance of Trans Chromosomal Methylation Patterns from Arabidopsis F1 Hybrids", Proceedings of the National Academy of Sciences, Feb. 4, 2014, pp. 2017-2022, vol. 111, No. 5. Virdi et al., "Arabidopsis MSH1 Mutation Alters the Epigenome and Produces Heritable Changes in Plant Growth", Nature Communications, Feb. 27, 2015, 9 pages.

Dahlgren et al., "Analysis of siRNA Specificity on Targets with Double-Nucleotide Mismatches", Nucleic Acids Research, 2008, pp. 1-7, vol. 36 No. 9.

Du et al., "A Systematic Analysis of the Silencing Effects of an Active siRNA at all Single-Nucleotide Mismatched Target Sites", Nucleic Acids Research, 2005, pp. 1671-1677, vol. 33, No. 5. Giannelos et al., "Tobacco Seed Oil as an Alternative Diesel Fuel:

Physical and Chemical Properties", Industrial Crops and Products, Jul. 2002, pp. 1-9, vol. 16 Issue 1.

Groszmann et al., "Intraspecific Arabidopsis Hybrids Show Different Patterns of Heterosis Despite the Close Relatedness of the Parental Genomes", Plant Physiology, Sep. 2014, pp. 265-280, vol. 166

(Continued)

Primary Examiner — Brent Page
Assistant Examiner — Matthew Keogh
(74) Attorney, Agent, or Firm — Thompson Coburn LLP;
Charles Romano

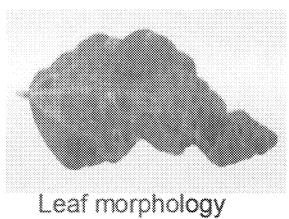
(57) ABSTRACT

The present invention provides methods for obtaining plants that exhibit useful traits by transient suppression of the MSH1 gene of the plants. Methods for identifying genetic loci that provide for useful traits in plants and plants produced with those loci are also provided. In addition, plants that exhibit the useful traits, parts of the plants including seeds, and products of the plants are provided as well as methods of using the plants.

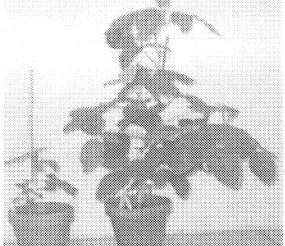
(56) References Cited

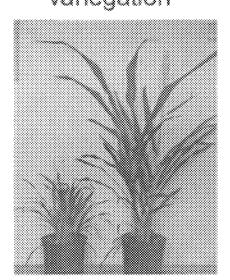
OTHER PUBLICATIONS

Shao et al., "Ws-2 Introgression in a Proportion of Arabidopsis Thaliana Col-0 Stock Seed Produces Specific Phenotypes and Highlights the Importance of Routine Genetic Verification", Department of Agronomy and Horticulture, University of Nebraska, pp. 1-47, manuscript received for publication in the Plant Cell Jan. 26, 2016.

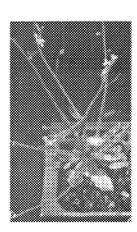

Virdi et al., "Arabidopsis MSH1 Mutation Alters the Epigenome and Produces Heritable Changes in Plant Growth", Nature Communications, Feb. 27, 2015, 23 pages including Supplemental Figures_2015b.

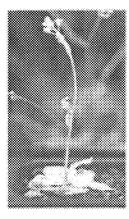
Virdi et al., "MSH1 is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development", Molecular Plant, 2015, pp. 1-16. Wesley et al., "Construct Design for Efficient, Effective and High-

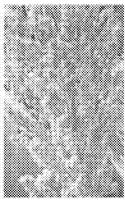

Wesley et al., "Construct Design for Efficient, Effective and High-Throughput Gene Silencing in Plants", The Plant Journal, Sep. 2001, pp. 581-590, vol. 27 Issue 6.


Abdelnoor et al., "Mitochondrial Genome Dynamics in Plants and Animals: Convergent Gene Fusions of a MutS Homologue" J Mol. Evol, Mar. 1, 2006, pp. 165-173, vol. 63.

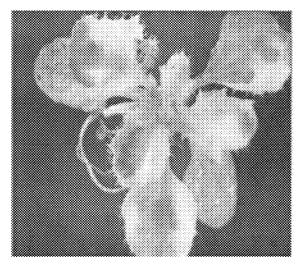
* cited by examiner




variegation



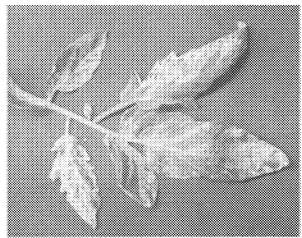
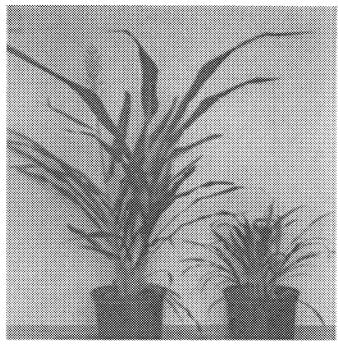
dwarfing



High light tolerance

male sterility

FIGURE 1

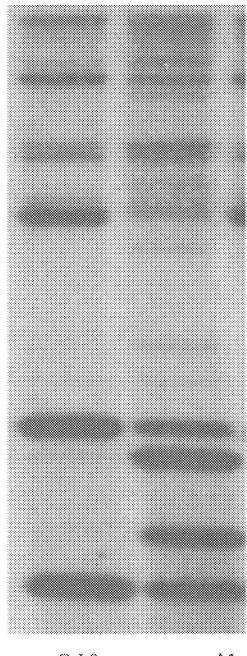
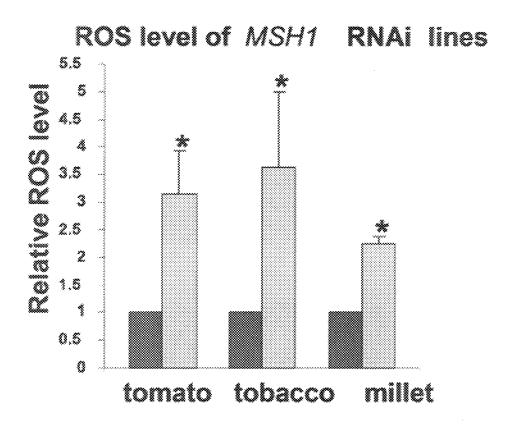
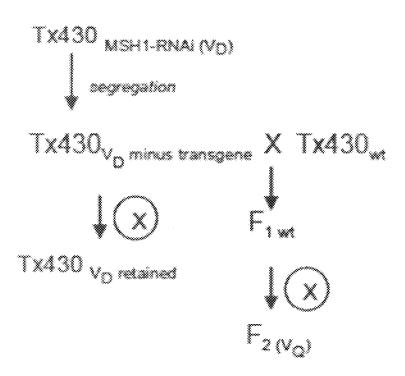


FIGURE 2


Tomato


FIGURE 3

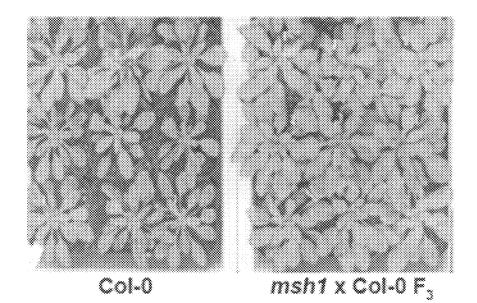
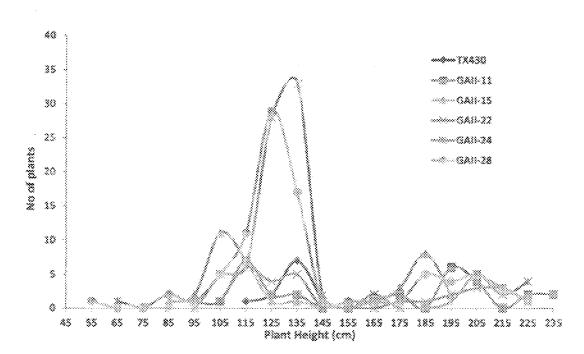

Col-0 msh1

FIGURE 4


(mm)

Col-0 msh1 x Col-0 F3 (MSIII positive progeny) (wild-type parent) 4.9 6.3 Fresh biomass <u>(g)</u> 2.2 2.9 Base diameter (mm) 1.6 2.0 Stalk diameter

FIGURE 7

Plant Height

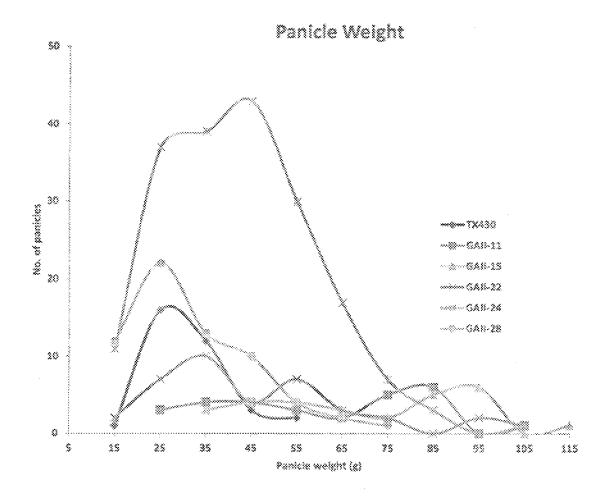
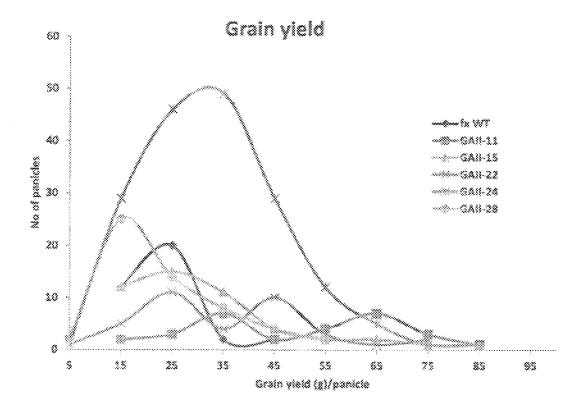
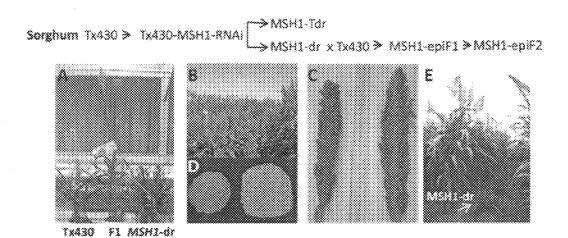




FIGURE 9

Arabidopsis Col-O msh1 x MSH1 > AtMSH1-epiF1 > AtMSH1-epiF2

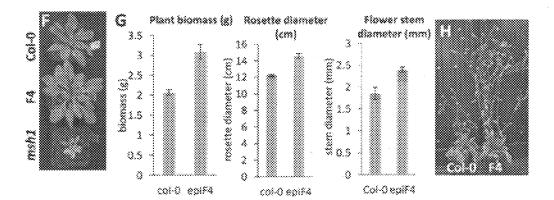


FIG. 11 A, B, C, D, E, F, G, H

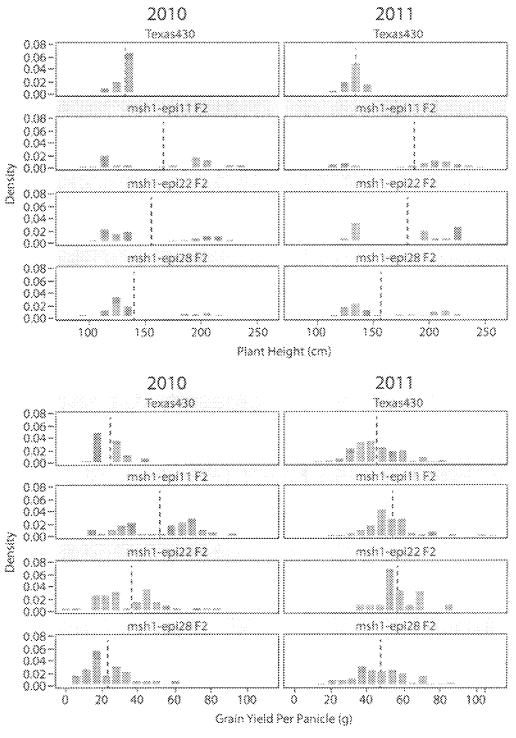
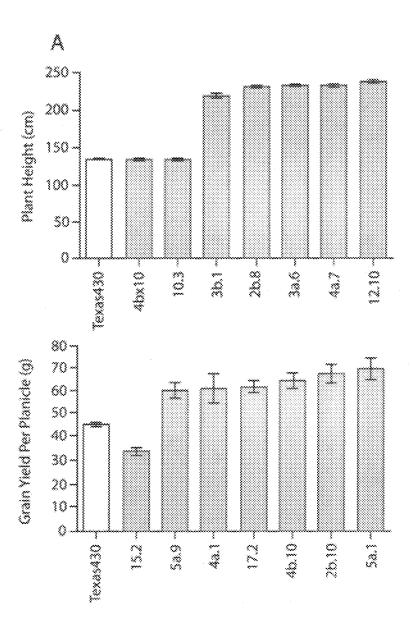
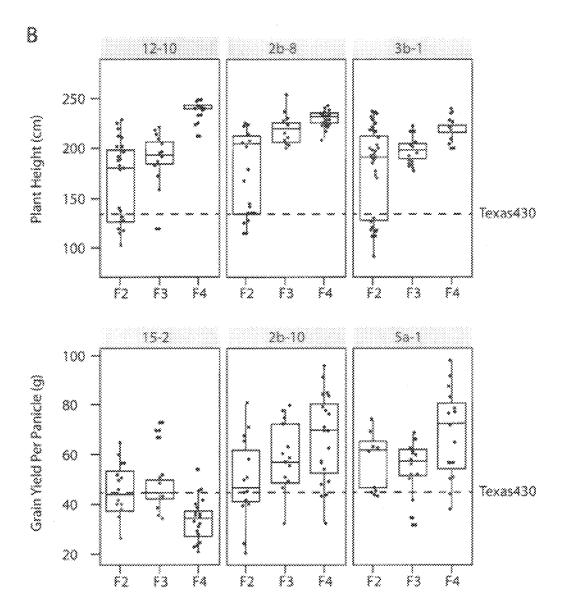




FIGURE 12

13A

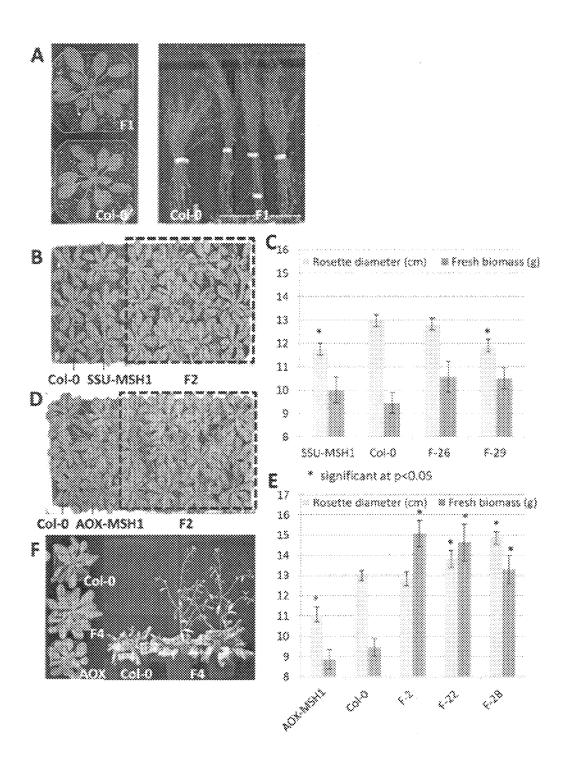
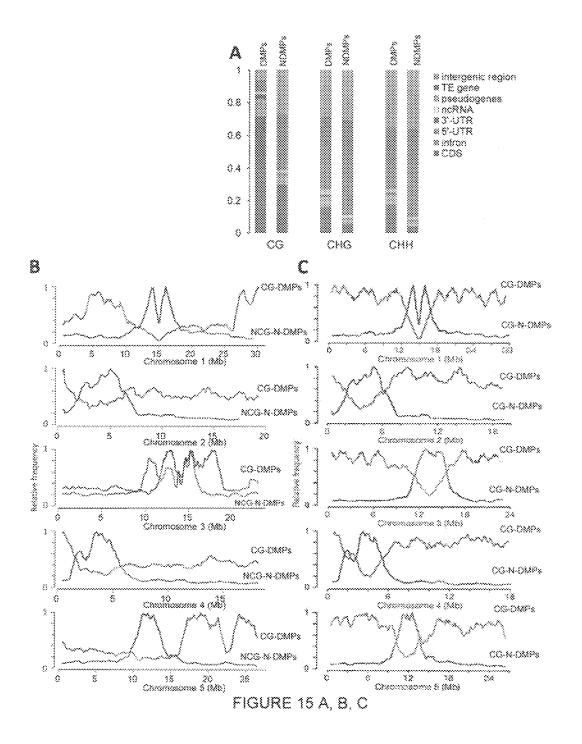



FIG. 14 A, B, C, D, E, F

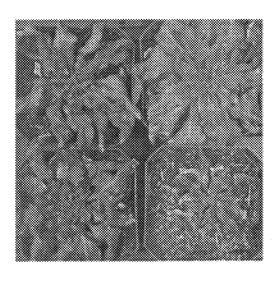


FIG. 16

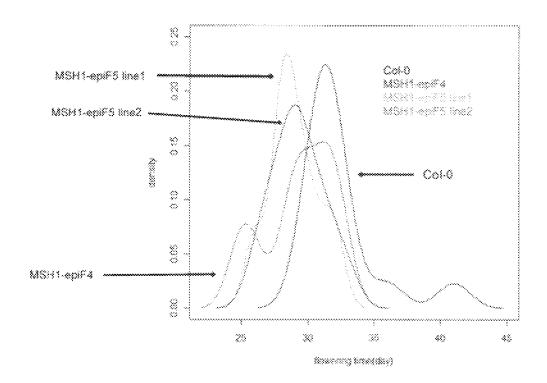


FIGURE 17

```
AT3027180
               CAUTTOCCAAAGCCCTTGTCAAACATCGTCCAACACGTATCACCACTCGA 50
               CANTICCCAAAACCCITTATCAAACATCÄTCCAACACÄTATCACCACTCÄA 83
Colo-MIX2-2
0010-8383-3
              CAATTOCCAAAACCOTTATCAAACATCÄTOTAACACÄTATCACTCACTCAA 83
0010-8082-4
              CAATTOOCAAAACOCTTATOAAACATCATOCAACACATATOACCACTCAA 83
Colo-MIX2-5
              CAATTOCCAAAACOUTTATCAACATCATCCAACACATATCACCACTCÖA 83
CO10-8182-8
              CANTICOCAGGACCOTTATCAAACATCÄTCCAACACÄTATCACCACTCAA 80
0010-8082-10
              CAATTOOCAAAACOOTTATOAAACATOÄTOOAACAGÄTATOAGCACTOŠA 83
Col0-MIR2-11
              CAATTICCIAAAACICTIATICAAACATOÄTICGAAGACÄTATCACCACTCAA 83
Co10-MIR2-12
              CAATTOOCAAAACCOTTATOAAACATCÄTOCAACACÄTATOACCACTOĞA 83
20030-88882-26
              - CAATTOCCAAAACOTTATCAAACSTÜÄTCCAACSOÄTSTOACCSCTOSA 83
05010-80002-27
              - CAATICCCAAAACCCTTXTCAAACATCÄTCCAACACÄTATCACCACTCGA 83
Colo-MIR2-28
              CAATTOCCAAAACOCTTATCAAACATCÄTSCAASAGAGÄTATCAGSAGSGAA 83
Colo-MiM2-29
              - Carticocarrocottaicrrockronic<u>r</u>icorrorox<mark>i</mark>tricricrocociór (83
F3 -Mix2 - 1
             CAATTCCCAAAACCCTTATCAAACATTGTCTAACACGTXTTACGCCCCTAA 166
83-81x2-2
              CAATTÜÜÜAAAACUUTTATURAACATOOTUURACACOTATUAUCACTOOR 80
23-36222-4
              CAATTOCOAAAACCCTTATOAAACATCOTOCAACACOTATCACCACTTOCA 83
23~X3x2~S
              $3 ~XXXX2~ 7
              CAATTOOCAAAACCOTTATCAAACATOOCCAACACXTXTCATCXCTOTA 99
93-361:2-11
             83-Mir2-10
              CAATTOCCAAAACCCTTATCAAACATCGTCCAACACGTATCACCACTTCGA 99
$3~86x2~18
              CANTYCCCAAAACCCTTATCAAACATCGGCAACACGGTATCACCACGGCGA
F3-M(Y2-16
             CAATTOOCAAAAOOOTTATCAAACATOOTOOAACAOOTATOAOOACTOSA 99
23-XXY2-27
              73-Mix2-28
              UAATTOOCAAAACCETTATCAAACAGGGGGGACAGGGGAGGGGGGGGAG
AT3G27150
              CARCATAAAGACAGAOGGTTCAACTACACCGGGGTTCGCGCCTCACCTTGA 169
              CARCATARRARACARROÑATTORACTACROS<mark>CÁCTOS</mark>OS COTOROCTARA 133
Col0-8882-2
              - CRACATRAGAGRAGRAGIA CACTOCA CONTRACACO (ACACOTTICA (CONTRACAL) 3.3.3
Col0 -NTR2 - 3
              CAACATAAAAACAAAC<mark>A</mark>ATTCAACTACACC<mark>A</mark>CACTC<mark>A</mark>CGCCTCACCTTAA 133
0010-8002-4
Colo-MIM2-5
              CAACATRABAACAAACÄATTORACTACACCÄCATTOÄCÄCCTCACCTTAA 133
              - Cracataraaaaaaaaaaaaaaa 136
Col8-88182-8
Cois-MIMZ-10
              CAACATAAAAACAAACAAYYCAACYACACXACACYCACACYYCACCYYAA 133
Co10-MIX2-11
              CAACATAAAAACAAACÄATYCAACYACACCÄCACTCÄCÄCTCACTYAA 1113
Col8-8182-12
              CAACATAAAAAAAAAAATTOAACTAGACACACACTGACACTTAA 133
063.9~80383~38
              CAACATAAAAAAAAAAAAATAATTCAACTACACCACACACCCCACACCTCACCTTAA 133
Col0-8182-27
              CAACATAAAACAAACÄATTCAACTACACCÄCACTCÄCÄCCTCACCTTAA 133
              CAACATAAAAACAAACAATYCAACTACACCACACTCACACCTCACCTYAA 1333
Colo-MIX2-28
              CAACATAAAAACAAACÄATTCAACTACACCÄCACTCÄCÄCCTCACCTTAA 133
0010-8382-29
X3-85x2-1
              CARCATARARACARACOCTTCARCTACRCCCOCACTCOCOCCTTCACCTTAR 150
              CAACATAAAAACAAACGATTCAACTACACGGCACTCGGCGCCTCACCTTAA 133
¥3-86122-2
23 - Mix2 - 4
              CANCETRALABCEARCHETTCHACTECACCHCHCTCHCHCCTCACCTTAA 1,33
¥3-81x2-5
              ¥3-86x3-7
              CAMBATAAAAACAAACOATYCAACTACACCOCOCTCOCOCCTCACCTTAA 149
73-Mix2-11
              CAACATAAAACAACAATTYAACTACACCGCCCTCCCCCTCACCTTAA 149
¥3-81Y2-12
              CAACATAAAAACAAACGATTCAACTACACGGGGCTCGCGCCCTCACCTTAA 149
#3-#3:22-35
              CAACATAXAAACAAACGATTCAACTACACTGCGCCTTTGCGCCTTAA 133
              23-Mir2-16
23-Mix2-27
              93-Mira-28
              CAACATAAAACAAACSATYCAACTACACCGCACTCGGCGCCTCACCTTAA 133
```

```
AT3027158
                AAATCTCATCACTCTTTACCAAACGCGAAAGCCCCTTATTAAGTAACTTT 159
Co20-XXX2-2
               — AAATOTOATOATTOTTAACAAAC<u>Ä</u>O<u>Ä</u>AAAACUOUTTATTAAATAACTTT 183
CO10-MIR2-3
                 AAATCICATCACTCTTTAACAAAC<u>A</u>CAAAACCCCCTTATTAAATAACTTT 183
               AAATCTCATCACTCTTTAACAAACÄCÄAAAACCCCTTATYAAATAACTYT 183
C010-8080-4
Colo-MIR2-9
              — AAATOTONTOACIOTTTAACAAAAGAGAAAAGOOOTTATTAAATAACTTT 183
Col0-X182-6
                - AASTOTCATCACTOTTTAACAAACÄCÄAAAACOOOTTATTAAATAATTYT 180
AMATOTOSTOACTOTTTAACAAACÄÖÄAAAACCCCTTATTAAATAACTTT 183
Colo-WIRS-II
               — AAATOTOATTACTOTTTAACAAAC<mark>ä</mark>OŠAAAACOOOTTATTAAATAACTTT 183
0010-2002-12
Colo-MIX2-26
                _XAXYCYCXYCXCCCTTYXACAAACÄCAAAAACCCCCYYXYYAAAYAA(YYYY_),8}
               ANATOTONICACIOTITACANACÃÇÃANACOCCOTINITANATANOTIT 183
Col0-MIM2-27
Cold-80R1-18 AAATCTCATCACTCTTTAACAAAGÄGÄAAAACCCCTTATTAAATAACTTT 183
Cole-simi-19
                AANTOTOKTOACTOTTTAACAAAC<mark>ä</mark>C<mark>ä</mark>AAAACOOOTTATTAAATAACTTT 183
93-Mix2-1
                - AANTOTONTOUCTCYTTAACAAAC<mark>A</mark>OGAAAACCCCTTATTAAATAACTTT 100
              AAATCICATOOTOTTAACAAACCCCCTTATTAAATAACTTI 183
F3-Mix2-2
F3-Mic2-4
              AAATCTCATCACTCTTTAACAAACSCSAAAAACCCCTTATTAAA;AACTCT ; 83
73-81r2-5
                AAATCTCXTCACTCTTTAACAACACCAAAACCCCTTXTTAAXTXACTTT 199
P3-Mir2-7
                - AAATCTCATCACTCTTTAACAAACÖCGAAAACCCCTTATTAAATAACTTT 139
F3-Mir2-33
               AAATCTCATCACCCTTTAACAAAOCCCCAAAACCCCCTTATTAAATAACTTT 199
¥3-8172-12
              AXATOYOXTOACTOYYXACAAACOOGAAAACCCCYYXYYAAAXAACTYY 399
73-Mir2-18
                AAATOTOATOACTOTTTAACAAACUOGAAAACCCCCTTATTAAATAACTTT 199
P3-Mix2-36
¥3-86x2-27
               AAATCTCATCACTCTTGACAAACACAAAAACCCCTTATTAAATAACTT 183
               AMATOTOATTACTOTTBACAAACTOGGAAAACCOTTATYAAATAACTTI 183
¥3-85x2-28
AT3G27150
                ACTITICIAATACTOGAAACQOGGCACGCGTGCGAGTATCTCGACCTCTAA 203
                - ANTTTOCHATACTOÑAANCÑOÑACNOÑOÑYAOÑAAYAYCYOÑACCOYYAN 2333
Col0-8182-2
                AATTTOCAATACTOGAAACACGACACACATACAAATATOTCAACCTCTAA 333
00010-80000-3
Col0-MIM2-4
                - AATTYOCAATACYCAAAACACACACACACACACATACAAATATCYCAACCYCYAA 233
Colo-MIM2.5
              AATTYCCANTACYCAAAACACACACCACACACACACTACCAAATATCYCCAACCCYCTAA 2333
               antitechatacteğalacğeğacacacğitacğantateteğacetetas 2)0
Col8-8383-6
0010-8182-10
                - ANTITICCANTACTONANACNONACACACACNINTACNANATATOTONACCITOTAN 2233
                ASTITICANTACTOÄAAACÄCÄACACACÄTACÄAATATOTOÄACCTOTAA 233
Colo-MIR2-11
                -BATTYCCABTACTCÄABACÄCÄACACACÄTACÄAATATCTCÄACCTCTAA 233
Colo-MIRG-12
START SHARE STREET, 12.60
                AMETTICCAMIACICĂMAMCĂCĂMCMCACĂŬINCĂMINICICĂMCCICIMA 233
                AATTTOCAATACTOÄAAACÄCÄACACACÄTACÄAATATOTOÄACCTOTAA 233
COLO-MIRZ-27
CO10-MIR2-28
              - AATTYOCAATACICÄAAACÄGÄACACACÄTACÄAATKITYTÄACTYTTAA 233
              aattiooaataotoäaakoäoäacacaoätaoäaatatotoäacototaa 200
Colo-Mika-29
#3-Mir2-1 AATTTOCAATACTOGAAACGOGGACACGOGTACAAATATCTOGACCTCTAA 233
AATTTOCAATACTCGAAACGOGGACACGOGTACAAATATCTCGACCTCTAA 233
P3-Mir2-9 AATTTCCAATACTCGAAACGCGACGCGCACACGCACTCTGA 233
P3-Mir2-9 AATTTCCAATACTCGAAACGCGACGCGCACGAATATCTCGACCTCTAA 233
P3-Mir2-9 AATTTCCAATACTCGAAACGCGACGCGCACGAATATCTTCGACCTCTAA 249
               AATTTTCAATACTCGAAACACGACACGCGTACGAATATCTTCGACCTTTAA 249
F3-Wirg-11
73-Mir2-12
              AATTTCCAATACTCGAAACÖCGGCACACGTACAAATATGTGGACGTGTAA 249
            AATTICKAATACTIGAAACGCGACACGGGTACGAATATCTIGACGTGTAA 233
AATTICKAATACTIGAAACGCGACACGGGTACGAATATCTIGACGTGTAA 233
P3-Mir2-19
¥3-81x2-16
¥3-86x2-27
              - ARTTICCARTRITOMARACISCISACROCITROGARTRICIOMROCITURA IIII
¥3-8422-28
               - AATTTOCAATACTCÖAAACOCTACACATACAAATATCTCÖACCTYCTAA ());
```

US 9,476,040 B2

AT3G27150	CTCGTXTACGAGCTGAGGAACATTTAGTAAACAATAATCTXCATCCTTAG	259
Colo-waxa-a	CTOÄTATAOÄAACTAAAAAACATTTAATAAACAA	363
Cole-MIR2-3	CYCÄTATACÄAACYAAAAAACATYTAAYAAACAA	267
Col0-MIR2-4	CYCÄTATACÄAACTAAAAACATTTAATAAACAA	267
Colo-MIR2-S	CTCÄTATACÄAACTAAAAAACATTTAATAAACAA	267
Colo-Minz-8	CTCATATACABAACTAAAAAACATTTAATAAACAA	284
Colo-MIRZ-10	CTCÄTATACÄAACTAAAAAACATTTAATAAACAA	267
Col0-MIR2-11	CTCÄTATACÄAACTAAAAAACATTTAATAAACAA.	267
CO10-MIR2-12	CTCÄTATACÄAACTAAAAAAACATITAATAAACAA	267
Colo-MIM2-26	CTCÄTATACÄAACTAAAAAACATTTAATAAACAA	367
Colo-MIRI-17	CTCÄTATACÄAACTAAAAAACATTTAATAAACAA	267
cole-xxx2-28	CYCXTATACXAACTAAAAACAYYYAAYAACAA	267
Colo-MIR2-29	CTCATATACAAACAAAAAACATITAATAAACAA	383
P3-Mir2-1	CTOTTATACTIAACTAAAAAACATTTAATAAACAA	284
F3-Mir2-2	CTC <u>A</u> TATACCAACTAAAAAACATTTAATAAAAAAA	267
W3-Wir2-4	CIVÜTATACGAACTAAAAAACATTTAATAAACAA	267
73-Mix2-5	CTCSTATACSAACTAAAAAACXTTTAATAAACAA	383
F3-Mirg-7	CTCSTATACSAACTAAAAAACATTTAATAAACAA	383
F3-Mir2-11	CTCCTATACTAAAAAAAACATTTAAYAAAAAA	283
#3-Mix2-12	CTCCTATACGAACTAAAAAACATTTAATAAACAA	383
83-Mir2-15	CYCATATACGAACYAAAAAACATTTAATAAACAA	367
93-Mix2-16	CTOTTATACCAACTAAAAAACATTTAATAAACAA	283
F3-Mix2-27	CTCTTATACGAACTAAAAAACATTTAATAAAACAA	267
F3-81:02-28	CTCATATACAAACTAAAAAACATTTAATAAACAA	267

PLANTS WITH USEFUL TRAITS AND RELATED METHODS

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit under 35 U.S.C. §119 (e) of U.S. Provisional Application No. 61/540,236, filed Sep. 28, 2011 and incorporated herein by reference in its entirety, and the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application No. 61/481,519, filed May 2, 2011 and incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with Government Support under a grant from the Department of Energy (DE-FG02-07ER15564 and DE-FG02-10ER16189) and the National Science Foundation (IOS 0820668 and IOS 1126935). The ²⁰ government has certain rights to this invention.

INCORPORATION OF SEQUENCE LISTING

The sequence listing contained in the file named ²⁵ "46589_103288_SEQ_LST_ST25.txt", which is 75,938 bytes in size (measured in operating system MS-Windows) and was created on May 1, 2012, is contemporaneously filed with this specification by electronic submission (using the United States Patent Office EFS-Web filing system) and is ³⁰ incorporated herein by reference in its entirety.

BACKGROUND OF INVENTION

The MSH1 gene represents a MutS homolog that has 35 undergone at least two important changes in gene structure within land plants (Abdelnoor et al. 2003). MutS is a prokaryotic gene that participates in mismatch repair and suppression of homologous recombination. Consistent with a model of direct protein-DNA interaction, MSH1 encodes 40 not only DNA binding (Domain I) and ATPase (Domain V) domains, but has undergone gene fusion early in its evolution to acquire a carboxy-terminal GIY-YIG type endonuclease domain (Domain VI) (Abdelnoor et al. 2006). The protein has also gained domains II, III, and IV, appearing 45 well-conserved among all land plants. This complexity of gene structure suggests that MSH1 has acquired new functions in plants. While numerous MutS homologs are characterized in eukaryotic lineages, no gene outside of land plants has been found to display the unusual features of 50 MSH1.

MSH1 function has been studied in *Arabidopsis* with MSH1 null (EMS and T-DNA insertion) mutants (i.e. msh1 mutants) and in other plant species by MSH1 RNAi suppression (Sandhu et al. 2007; Xu et al. 2011). What emerged 55 from these studies is that the phenotypic consequences of RNAi suppression are quite similar among species, including leaf variegation, cytoplasmic male sterility (CMS), a reduced growth-rate phenotype, delayed or non-flowering phenotype, and enhanced susceptibility to pathogens. Exposure to heat (Shedge et al. 2010), high light stress (Xu et al. 2011) and other environmental stress conditions (Hruz et al. 2008) result in markedly reduced MSH1 transcript levels.

Initial MSH1 investigations suggested its direct influence on plant mitochondrial genome stability. Null msh1 mutants 65 in *Arabidopsis* display enhanced recombination activity at 47 mitochondrial repeats that, over multiple generations, 2

creates significant genomic rearrangement. A genomic consequence of MSH1 disruption is the process of substoichiometric shifting (SSS) (Arrieta-Montiel et al. 2009). SSS activity produces dramatic changes in relative copy number of parts of the mitochondrial genome, causing selective amplification or suppression of genes residing on affected subgenomes. There are phenotypic consequences to these genomic changes; the SSS process participates in expression of cytoplasmic male sterility (Sandhu et al. 2007), as well as its spontaneous reversion to fertility in natural populations (Janska et al. 1998; Bellaoui et al. 1998; Davila et al. 2011; Mackenzie, 2011). In fact, MSH1 may have played a role in the evolution of gynodioecy as a reproductive strategy in plants (McCauley and Olson, 2008).

Prior to its cloning and identification as a MutS homolog, the MSH1 gene was first named Chloroplast Mutator (CHM) by G. Redei, because its mutation resulted in variegation and altered growth that appeared to derive from chloroplast dysfunction (Redei 1973). In fact, MSH1 encodes a dual targeted protein. A MSH1-GFP transgene fusion protein localizes to both mitochondrial and plastid nucleoids (Xu et al. 2011). The nucleoid is a small, dense protein-RNA-DNA complex that envelopes the organellar genomes. Unlike the mitochondrion however, where recombination is prevalent, no evidence of enhanced chloroplast repeat-mediated recombination is observed in the msh1 mutant. It is possible that MSH1 disruption affects replication features of the plastid genome.

In summary, the effects of MSH1 suppression that have been disclosed in the aforementioned references are limited to effects on plant mitochondria and plastids.

Evidence exists in support of a link between environmental sensing and epigenetic changes in both plants and animals (Bonasio et al., Science 330, 612, 2010). Trans-generational heritability of these changes remains a subject of active investigation (Youngson et al. Annu. Rev. Genom. Human Genet. 9, 233, 2008). Previous studies have shown that altered methylation patterns are highly heritable over multiple generations and can be incorporated into a quantitative analysis of variation (Vaughn et al. 2007; Zhang et al. 2008; Johannes et al. 2009). Earlier studies of methylation changes in Arabidopsis suggest amenability of the epigenome to recurrent selection and also suggest that it is feasible to establish new and stable epigenetic states (F. Johannes et al. PLoS Genet. 5, e1000530 (2009); F. Roux et al. Genetics 188, 1015 (2011). Manipulation of the Arabidopsis met 1 and ddmt mutants has allowed the creation of epi-RIL populations that show both heritability of novel methylation patterning and epiallelic segregation, underscoring the likely influence of epigenomic variation in plant adaptation (F. Roux et al. Genetics 188, 1015 (2011)). In natural populations, a large proportion of the epiallelic variation detected in Arabidopsis is found as CpG methylation within generich regions of the genome (C. Becker et al. Nature 480, 245 (2011), R. J. Schmitz et al. Science 334, 369 (2011).

SUMMARY OF INVENTION

Methods for producing a plant exhibiting useful traits, methods for identifying one or more altered chromosomal loci in a plant that can confer a useful trait, methods for obtaining plants comprising modified chromosomal loci that can confer a useful trait, plants exhibiting the useful traits, parts of those plants including cells, leafs, stems, flowers and seeds, methods of using the plants and plant parts, and products of those plants and plant parts, including processed products such as a feed or a meal are provided herein.

In certain embodiments, methods for producing a plant exhibiting a useful trait comprising the steps of: a) suppressing expression of MSH1 gene(s) in a first parental plant or plant cell; b) outcrossing the parental plant of step (a), progeny of the parental plant of step (a), a plant obtained 5 from the plant cell of step (a), or progeny of a plant obtained from the plant cell of step (a) to a second plant wherein MSH1 had not been suppressed; c). screening a population of progeny plants obtained from the outcross of step (b) for at least one useful trait, wherein a portion of the population 10 of progeny plants express MSH1; and, d). selecting a progeny plant comprising the trait that expresses MSH1, wherein the trait is heritable and reversible, are provided. In certain embodiments of the methods, the trait is associated with one or more altered chromosomal loci. In certain 15 embodiments, such altered chromosomal loci can comprise loci that are methylated. In certain embodiments, methods for producing a plant exhibiting a useful trait comprising the steps of: a) suppressing expression of MSH1 gene(s) in a first parental plant or plant cell; b) outcrossing the parental 20 plant of step (a), progeny of the parental plant of step (a), a plant obtained from the plant cell of step (a), or progeny of a plant obtained from the plant cell of step (a) to a second plant wherein MSH1 had not been suppressed; c) screening a population of progeny plants obtained from the outcross of 25 step (b) for at least one useful trait, wherein a portion of the population of progeny plants express MSH1; and, d) selecting a progeny plant comprising the trait that expresses MSH1, wherein the trait is associated with one or more mutated chromosomal loci, are provided. In certain embodi- 30 ments, the mutated chromosomal loci comprise nucleotide inversions, insertions, deletions, substitutions, or combinations thereof. In certain embodiments, the chromosomal loci comprise mutations are reversible. In certain embodiments, the chromosomal loci comprise mutations are irreversible. 35 In certain embodiments of any of the preceding methods, the method further comprises the step of producing seed from: i) a selfed progeny plant of step (d), ii) an out-crossed progeny plant of step (d), or, iii) from both of a selfed and an out-crossed progeny plant of step (d). In certain embodi- 40 ments, the methods can further comprise the step of assaying seed or plants grown from the seed for the presence of the trait. In certain embodiments of any of the preceding methods, the first parental plant or plant cell comprises a transgene that can suppress expression of MSH1. In certain 45 embodiments of the methods, the transgene is selected from the group of transgenes that suppress expression of MSH1 by producing a small inhibitory RNA (siRNA), a microRNA (miRNA), a co-suppressing sense RNA, and/or an anti-sense RNA. In certain embodiments of any of the preceding 50 methods, the first parental plant or plant cell can be obtained by crossing a female plant with a distinct male plant, wherein at least one of the female or male plants comprise a transgene that suppresses expression of the endogenous MSH1 gene of the parental plant(s), and wherein the plants 55 were isogenic inbred lines prior to introduction of the transgene. In certain embodiments of any of the preceding methods, the first parental plant or plant cell was isogenic to the second parental plant prior to suppression of MSH1 in the first parental plant or plant cell. In certain embodiments 60 of any of the preceding methods the trait is selected from the group consisting of yield, male sterility, non-flowering, resistance to biotic stress, and resistance to abiotic stress. In certain embodiments, abiotic stress can be selected from the group consisting of drought stress, osmotic stress, nitrogen 65 stress, phosphorous stress, mineral stress, heat stress, cold stress, and/or light stress. In certain embodiments, resistance

4

to abiotic stress can include drought tolerance, high light tolerance, heat tolerance, cold tolerance, and salt tolerance. In certain embodiments of the methods, biotic stress can be selected from the group consisting of plant fungal pathogens, plant bacterial pathogens, plant viral pathogens, insects, nematodes, and herbivores, and any combination thereof. In certain embodiments of any of the preceding methods, the trait is not caused by substoichiometric shifting (SSS) in mitochondria of the progeny plant. In certain embodiments of any of the preceding methods, the trait is male sterility and is not caused by substoichiometric shifting (SSS) in mitochondria of the progeny plant. In certain embodiments of any of the preceding methods, the progeny plant in step (d) or progeny thereof exhibit an improvement in the trait in comparison to a plant that had not been subjected to suppression of MSH1 expression but was otherwise isogenic to the first parental plant or plant cell parental plants. In certain embodiments of any of the preceding methods, the plant is a crop plant. In certain embodiments of any of the preceding methods, the crop plant is selected from the group consisting of cotton, canola, wheat, barley, flax, oat, rye, turf grass, sugarcane, alfalfa, banana, broccoli, cabbage, carrot, cassava, cauliflower, celery, citrus, a cucurbit, eucalyptus, garlic, grape, onion, lettuce, pea, peanut, pepper, potato, poplar, pine, sunflower, safflower, soybean, strawberry, sugar beet, sweet potato, tobacco, cassava, cauliflower, celery, citrus, cotton, a cucurbit, eucalyptus, garlic, grape, onion, lettuce, pea, peanut, pepper, potato, poplar, pine, sunflower, safflower, strawberry, sugar beet, sweet potato, tobacco, cassava, cauliflower, celery, citrus, cucurbits, eucalyptus, garlic, grape, onion, lettuce, pea, peanut, pepper, poplar, pine, sunflower, safflower, soybean, strawberry, sugar beet, tobacco, Jatropha, Camelina, and Agave. In certain embodiments of any of the preceding methods, the crop plant is selected from the group consisting of corn, soybean, cotton, canola, wheat, rice, tomato, tobacco, millet, and sorghum. In certain embodiments of any of the preceding methods, the crop is sorghum. In certain embodiments of any of the preceding methods, the crop is sorghum and the trait is selected from the group consisting of panicle length, panicle weight, dry biomass, and combinations thereof.

Also provided herein are plants, plant parts including seeds, or products of the plants or seeds, that exhibit useful traits caused by alterations and/or mutations in chromosomal loci resulting from suppression of MSH1. In certain embodiments, the plant seed, or products thereof that exhibit useful traits caused by alterations and/or mutations in chromosomal loci resulting from suppression of MSH1 exhibits an improvement in at least one useful trait in comparison to a plant, plant parts including seeds, or products of the plants or seeds, that had not been subjected to suppression of MSH1 expression but was otherwise isogenic to the first parental plant or plant cell. In certain embodiments, such plants, seeds or products of the invention that exhibit useful traits caused by alterations and/or mutations in chromosomal loci resulting from suppression of MSH1 can comprise one or more alterations and/or mutations in one or more chromosomal loci that were induced by MSH1 suppression. In certain embodiments, a plant or a crop plant produced by any of the preceding methods, wherein the crop plant exhibits an improvement in at least one useful trait in comparison to a plant that had not been subjected to suppression of MSH1 expression but was otherwise isogenic to the first parental plant or plant cell is provided. In certain embodiments, any of the aforementioned plants or crop plants is inbred and exhibits an improvement in at least one

useful trait in comparison to the parental plant or parental plants. Also provided herein are seed obtained from any of the aforementioned plants or crop plants. Also provided herein are processed products from any of the aforementioned plants, crop plants or seeds, wherein the product 5 comprises a detectable amount of a chromosomal DNA, a mitochondrial DNA, a plastid DNA, plastid and mitochondrial DNA, or any combination thereof. In certain embodiments, the product can comprises a detectable amount of a chromosomal DNA that comprise one or more alterations 10 and/or mutations in one or more chromosomal loci that were induced by MSH1 suppression. In certain embodiments of any of the aforementioned processed products, the product can be oil, meal, lint, hulls, or a pressed cake.

Also provided herein are methods for producing seed that 15 comprise harvesting seed from any of the aforementioned plants or crop plants of the invention. In certain embodiments, methods for producing a lot of seed comprising the steps of selfing a population of plants or crop plants of the invention, growing the selfed plants, and harvesting seed 20 therefrom are provided. In certain embodiments, the harvested seed or a plant obtained therefrom exhibits the improvement in at least one useful trait.

Also provided herewith are methods of using any of the aforementioned plants or crop plants of the invention that 25 comprise any of the improved traits, where the methods comprise growing, propagating, or cultivating the plants or crop plants of the invention that exhibit the improved trait. Methods of obtaining improved yields that comprise harvesting any plant part including a seed of any of the 30 aforementioned plants or crop plants of the invention are also provided. In certain embodiments, the harvested seed or a plant obtained therefrom exhibits the improvement in at least one useful trait.

In certain embodiments, methods for identifying one or 35 more altered chromosomal loci in a plant that can confer a useful trait are provided. In one embodiment, methods comprising the steps of: a. comparing one or more chromosomal regions in a reference plant that does not exhibit the useful trait to one or more corresponding chromosomal 40 regions in a test plant that does exhibit the useful trait, wherein the test plant expresses MSH1 and was obtained from a parental plant or plant cell wherein MSH1 had been suppressed; and, b. selecting for one or more altered chromosomal loci present in the test plant that are absent in the 45 reference plant and that are associated with the useful trait are provided. In certain embodiments, an altered chromosomal locus comprises a chromosomal DNA methylation state, a post-translation modification of a histone protein associated with a chromosomal locus, or any combination 50 thereof. In certain embodiments, the selection comprises isolating a plant or progeny plant comprising the altered chromosomal locus or obtaining a nucleic acid associated with the altered chromosomal locus. In certain embodiments, both the reference plant and the test plant are 55 obtained from a population of progeny plants obtained from a parental plant or plant cell wherein MSH1 had been suppressed. In certain embodiments, both the reference plant and the parental plant or plant cell were isogenic prior to suppression of MSH1 in the parental plant or plant cell. In 60 certain embodiments, the useful trait is selected from the group consisting of yield, male sterility, non-flowering, biotic stress resistance, and abiotic stress resistance. In certain embodiments, abiotic stress can be selected from the group consisting of drought stress, osmotic stress, nitrogen 65 stress, phosphorous stress, mineral stress, heat stress, cold stress, and/or light stress. In certain embodiments, resistance

6

to abiotic stress can include drought tolerance, high light tolerance, heat tolerance, cold tolerance, and salt tolerance. In certain embodiments of the methods, the biotic stress resistance can be selected from the group consisting of plant fungal pathogen resistance, plant bacterial pathogen resistance, plant viral pathogen resistance, insect resistance, nematode resistance, and herbivore resistance, and any combination thereof. In certain embodiments, the useful trait is selected from the group consisting of enhanced lodging resistance, enhanced growth rate, enhanced biomass, enhanced tillering, enhanced branching, delayed flowering time, and delayed senescence. Also provided herein are altered chromosomal loci identified by any of the preceding methods. Such altered chromosomal loci can comprise a chromosomal DNA methylation state, a post-translation modification of a histone protein associated with a chromosomal locus, or any combination thereof.

Also provided herein are plants comprising any of the altered chromosomal loci identified by any of the preceding methods.

Also provided herein are methods for producing a plant exhibiting a useful trait. In certain embodiments, these methods can comprise the steps of: a. introducing a chromosomal modification associated with a useful trait into a plant, wherein the chromosomal modification comprises an altered chromosomal locus induced by MSH1 suppression associated with the useful trait, a transgene that provides for the same genetic effect as an altered chromosomal locus induced by MSH1 suppression associated with the useful trait, or a chromosomal mutation that provides for the same genetic effect as an altered chromosomal locus induced by MSH1 suppression associated with the useful trait; and, b. selecting for a plant that comprises the chromosomal modification and exhibits the useful trait. In certain embodiments, the methods can further comprise the step of producing seed from: i) a selfed progeny plant of the selected plant of step (b), ii) an out-crossed progeny plant of the selected plant of step (b), or, iii) from both of a selfed and an out-crossed progeny plant of the selected plant of step (b). In certain embodiments of the methods, the chromosomal modification can comprise an altered chromosomal locus and the plant is selected by assaying for the presence of a chromosomal DNA methylation state, a post-translation modification of a histone protein associated with a chromosomal locus, or any combination thereof, that is associated with the altered chromosomal locus. In certain embodiments, the chromosomal modification comprises the transgene or the chromosomal mutation and the plant is selected by assaying for the presence of the transgene or the chromosomal mutation. In other embodiments, the plant is selected by assaying for the presence of the useful trait. In certain embodiments, the chromosomal modification comprises an altered chromosomal locus and the altered chromosomal locus comprises a chromosomal DNA methylation state, a post-translation modification of a histone protein associated with a chromosomal locus, or any combination thereof. In certain embodiments, the altered chromosomal locus has a genetic effect that comprises a reduction in expression of a gene and the chromosomal modification comprises a transgene or a chromosomal mutation that provides for a reduction in expression of the gene. In certain embodiments where the altered chromosomal locus has a genetic effect that comprises a reduction in expression of a gene and the chromosomal modification comprises a transgene, the transgene reduces expression of the gene by producing a small inhibitory RNA (siRNA), a microRNA (miRNA), a co-suppressing sense RNA, and/or an anti-sense RNA directed to the gene. In

certain embodiments, the altered chromosomal locus has a genetic effect that comprises an increase in expression of a gene and the chromosomal modification comprises a transgene or a chromosomal mutation that provides for an increase in expression of the gene. In certain embodiments 5 of any of the preceding methods, the useful trait is selected from the group consisting of yield, male sterility, nonflowering, biotic stress resistance, and abiotic stress resistance. In certain embodiments, abiotic stress can be selected from the group consisting of drought stress, osmotic stress, 10 nitrogen stress, phosphorous stress, mineral stress, heat stress, cold stress, and/or light stress. In certain embodiments, resistance to abiotic stress can include drought tolerance, high light tolerance, heat tolerance, cold tolerance, and salt tolerance. In certain embodiments of the methods, 15 biotic stress can be selected from the group consisting of plant fungal pathogens, plant bacterial pathogens, plant viral pathogens, insects, nematodes, and herbivores, and any combination thereof. In certain embodiments of the methods, the useful trait is selected from the group consisting of 20 enhanced lodging resistance, enhanced growth rate, enhanced biomass, enhanced tillering, enhanced branching, delayed flowering time, and delayed senescence. Also provided herein are plants made by any of the preceding methods. In certain embodiments of any of the preceding 25 methods, the plant is a crop plant. In certain embodiments of any of the preceding methods, the crop plant is selected from the group consisting of cotton, canola, wheat, barley, flax, oat, rye, turf grass, sugarcane, alfalfa, banana, broccoli, cabbage, carrot, cassava, cauliflower, celery, citrus, a cucur- 30 bit, eucalyptus, garlic, grape, onion, lettuce, pea, peanut, pepper, potato, poplar, pine, sunflower, safflower, soybean, strawberry, sugar beet, sweet potato, tobacco, cassava, cauliflower, celery, citrus, cotton, a cucurbit, eucalyptus, garlic, grape, onion, lettuce, pea, peanut, pepper, potato, poplar, 35 pine, sunflower, safflower, strawberry, sugar beet, sweet potato, tobacco, cassava, cauliflower, celery, citrus, cucurbits, eucalyptus, garlic, grape, onion, lettuce, pea, peanut, pepper, poplar, pine, sunflower, safflower, soybean, strawberry, sugar beet, tobacco, Jatropha, Camelina, and Agave. 40 In certain embodiments of any of the preceding methods, the crop plant is selected from the group consisting of corn, soybean, cotton, canola, wheat, rice, tomato, tobacco, millet, and sorghum. In certain embodiments of any of the preceding methods, the crop is *sorghum*. In certain embodiments of 45 any of the preceding methods, the crop is sorghum and the trait is selected from the group consisting of panicle length, panicle weight, dry biomass, and combinations thereof.

Also provided herein are plants, plant parts, including but not limited to, seeds, leaves, stems roots, and flowers, or 50 products of the plants, or plant parts including but not limited to seeds, that comprise a chromosomal modification associated with a useful trait or a chromosomal alteration associated with a useful trait. In certain embodiments, the plant part can comprise a non-regenerable plant part or 55 non-regenerable portion of a plant part. In certain embodiments, the products can be processed products that include, but are not limited to, a feed or a meal obtained from a plant part. In certain embodiments, the plants seed, or products thereof that exhibit useful traits caused by a chromosomal 60 modification exhibits an improvement in at least one useful trait in comparison to a plant, plant parts including seeds, or products of the plants or seeds, that do not comprise the chromosomal modification. In certain embodiments, such plants, seeds or products that that exhibit useful traits, can 65 comprise a chromosomal modification that comprises a altered chromosomal locus induced by MSH1 suppression

8

associated with the useful trait, a transgene that provides for the same genetic effect as an altered chromosomal locus induced by MSH1 suppression associated with the useful trait, or a chromosomal mutation that provides for the same genetic effect as an altered chromosomal locus induced by MSH1 suppression associated with the useful trait. In certain embodiments, such plants, plant parts, seeds or products that exhibit useful traits can comprise an altered chromosomal locus that comprises a chromosomal DNA methylation state, a post-translation modification of a histone protein associated with a chromosomal locus, or any combination thereof. In certain embodiments, the altered chromosomal locus that comprises a chromosomal DNA methylation state can comprise a distinguishing portion of the altered chromosomal locus that is not found in plants, plant parts, or plant products that have not been subject to MSH1 supression. In certain embodiments, the distinguishing portion of the altered chromosomal locus can comprise a methylated DNA molecule of at least about 25 nucleotides, 50 nucleotides, 100 nucleotides, 200 nucleotides, 500 nucleotides, or more. In certain embodiments, a plant, plant cell, or plant product produced by any of the preceding methods, wherein the plant exhibits an improvement in at least one useful trait in comparison to a plant that does not comprise the chromosomal alteration but was otherwise isogenic to the first parental plant or plant cell is provided. In certain embodiments, any of the aforementioned plants is inbred and exhibits an improvement in at least one useful trait in comparison to the parental plant or parental plants. Also provided herein are seed obtained from any of the aforementioned plants, plant cells, or crop plants. Also provided herein are processed products from any of the aforementioned plants, crop plants or plant parts including, but not limited to seeds, wherein the product comprises a detectable amount of a chromosomal DNA comprising any of the aforementioned chromosomal modifications that include, but are not limited to, an altered chromosomal locus, a transgene that provides for the same genetic effect as an altered chromosomal locus induced by MSH1 suppression associated with the useful trait, or a chromosomal mutation that provides for the same genetic effect as an altered chromosomal locus induced by MSH1 suppression associated with the useful trait. In certain embodiments of any of the aforementioned processed products, the product can be oil, meal, lint, hulls, or a pressed cake.

Also provided herein are methods for producing seed that comprise harvesting seed from any of the aforementioned plants or crop plants of the invention. In certain embodiments, methods for producing a lot of seed comprising the steps of selfing a population of plants or crop plants of the invention, growing the selfed plants, and harvesting seed therefrom are provided.

Also provided herewith are methods of using any of the aforementioned plants or crop plants of the invention that comprise any of the improved traits, where the methods comprise growing, propagating, or cultivating the plants or crop plants of the invention that exhibit the improved trait. Methods of obtaining improved yields that comprise harvesting any plant part including a seed of any of the aforementioned plants or crop plants of the invention are also provided.

Use in any process of any of the plants, plant parts or portions thereof including but not limited to plant cells, non-regenerable plant parts or portions thereof including but not limited to plant cells, or processed plant products is also provided herein. Processes for which the plants, plant parts or portions thereof, non-regenerable plant parts or portions

thereof, or processed plant products provided herein can be used include, but are not limited to, use in breeding, use as biofuel, use as animal feed, use in human food products, and use in any industrial, food, or feed manufacturing processes.

Also provided herein are seed that exhibit the useful 5 trait(s) and plants obtained from the seed that exhibit the improvement in the useful trait(s). In certain embodiments, the seed can comprise an altered chromosomal loci that is associated with the useful trait(s) or that impart the useful trait(s).

In certain embodiments, the plants, plant parts, nonregenerable plant parts, plant cells, non-regenerable plant cells, plant products or processed plant product provided herein can comprise a detectable amount of a chromosomal DNA that comprises an altered chromosomal locus induced 15 by MSH1 suppression associated with the useful trait, a transgene that provides for the same genetic effect as an altered chromosomal locus induced by MSH1 suppression associated with the useful trait, or a chromosomal mutation that provides for the same genetic effect as an altered 20 chromosomal locus induced by MSH1 suppression associated with the useful trait. In certain embodiments, the altered chromosomal locus that comprises a chromosomal DNA methylation state can comprise a distinguishing portion of the altered chromosomal locus that is not found in plants, 25 plant cells, non-regenerable plant cells, plant parts, nonregenerable plant parts, plant products, or processed plant products that have not been subject to MSH1 suppression. In certain embodiments, the distinguishing portion of the altered chromosomal locus can comprise a methylated DNA 30 molecule of at least about 25 nucleotides, 50 nucleotides, 100 nucleotides, 200 nucleotides, 500 nucleotides, or more. Processed products provided herein comprising the chromosomal DNA or distinguishing portions thereof include, but are not limited to, products that comprise oil, meal, lint, 35 hulls, or a pressed cake.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in 40 and form a part of the specification, illustrate certain embodiments of the present invention. In the drawings:

FIG. 1 illustrates various phenotypes that are observed in various plants subjected to MSH1 suppression such as cytoplasmic male sterility, variegation and altered chloro- 45 plast development, reduced growth rate and dwarfing, altered flowering time or non-flowering, reduced flavonoid biosynthesis and lack of anthocyanins, enhanced pathogen susceptibility, altered leaf morphologies, and high light tolerance.

FIG. 2 illustrates leaf variegation in *Arabidopsis* (top), tomato (middle), and *sorghum* (bottom panel) plants that had been subjected to MSH1 suppression.

FIG. 3 illustrates dwarfing in *Sorghum* (top) and tomato (bottom panel) plants that had been subjected to MSH1 55 suppression.

FIG. 4 illustrates mitochondrial DNA rearrangements in *Arabidopsis* that had been subjected to MSH1 suppression.

FIG. 5 illustrates increases in Reactive Oxygen Species (ROS) that are observed in tomato, tobacco, and millet 60 plants subjected to MSH1 suppression.

FIG. 6 illustrates an exemplary and non-limiting scheme for obtaining plants that exhibit various types of heritable phenotypic variation referred to herein as "discrete variation" (V_D) as a result of having been subjected to MSH1 65 suppression and for obtaining plant lines that can exhibit "quantitative variation" or " V_Q " and various useful traits.

10

FIG. 7 illustrates an *Arabidopsis* plant line (msh1×Col-0 F₃) that exhibits increases in biomass relative to an otherwise isogenic parental plant that had not been subjected to MSH1 suppression (Col-0).

FIG. 8 illustrates the distribution of plant heights (in cM) that are obtained in distinct *sorghum* lines GAII-11 (squares), GAI1-15 (triangles), GAII-22 (opposing brackets), GAII-24, and GAII-28 (circles) derived from outcrosses of plants where MSH1 expression was suppressed. The wild type reference line is fx WT (diamonds).

FIG. 9 illustrates the distribution of panicle weights (in grams) that are obtained in distinct *sorghum* lines GAII-11 (squares), GAII-15 (triangles), GAII-22 (opposing brackets), GAII-24, and GAII-28 (circles) derived from outcrosses of plants where MSH1 expression was suppressed. The wild type reference line is fx WT (diamonds).

FIG. **10** illustrates the distribution of grain yield (in grams) that are obtained in distinct *sorghum* lines GAII-11 (squares), GAI1-15 (triangles), GAII-22 (opposing brackets), GAII-24, and GAII-28 (circles) derived from outcrosses of plants where MSH1 expression was suppressed. The wild type reference line is fx WT (diamonds).

FIG. 11A-H illustrates the enhanced growth phenotype of MSH1-epi lines in Arabidopsis and sorghum. The transgene and crossing procedures used to derive sorghum and Arabidopsis epi-populations are indicated. (A) The phenotype of the F1 progeny derived from crossing Tx430×MSH1-dr. (B) Field grown epiF2, F3 and F4 sorghum lines show variation in plant architecture and height. (C) Panicles from Tx430 (on left, 66 gm, 8 mm stem) versus epi-F2 individual (on right, 112 gm, 11 mm stem). (D) seed yield from the panicles shown in C. (E) The MSH1-dr sorghum phenotype under field conditions. (F) Evidence of enhanced rosette growth in an epi-F4 line of Arabidopsis. (G) Arabidopsis epi-F4 plants shown enhanced plant biomass, rosette diameter and flower stem diameter relative to Col-0. Data shown as mean±SE from >6. (H) The Arabidopsis epiF4 phenotype at flowering.

FIG. 12 illustrates enhanced phenotypic variation in *sorghum* MSH1-epiF2 lines. Phenotypic distributions are shown for plant height and grain yield from three independent *sorghum* epiF2 populations grown in two field plantings. Population means are shown by dashed vertical lines.

FIG. 13A, B illustrate phenotypic variation in *sorghum* MSH1-epiF2, F3 and F4 lines. (A) MSH1-epiF4 lines selected for plant height and grain yield per panicle. For plant height, lines 4b-10, 10.3 and 3a.2 were selected for low plant height, all others were selected for tall. For grain yield, line 15.2 was selected for low yield, all others were selected for high. (B) Box plots showing individual population response to selection for four independent populations. Horizontal dashed line represents mean for Tx430 wildtype. In the case of grain yield, F3 selection was carried out in the greenhouse.

FIG. 14A-E illustrates that MSH1-epi enhanced growth in *Arabidopsis* is associated with chloroplast effects. (A) Mitochondrial hemi-complementation line AOX-MSH1×Col-0 F1; (B) Plastid-complemented SSU-MSH1×Col-0 F2 appears identical to Col-0 wildtype, (C) Rosette diameter and fresh biomass of SSU-MSH1-derived F2 lines relative to Col-0; (D) Mitochondrial-complemented AOX-MSH1×Col-0 F2 showing enhanced growth; (E) Rosette diameter and fresh biomass of AOX-MSH1-derived F2 lines is significantly greater (P<0.05) than Col-0. (F) Enhanced growth phenotype in the F4 generation of AOX-MSH1×Col-0.

FIG. **15**A-C illustrates Genome-wide 5-methyl-cytosine patterns in *Arabidopsis* Col-0 wildtype and MSH1-epiF3

lines. (A) Relative contributions of CG, CHG and CHH methylation to differential and non-differential methylation of the genome. Note that the intergenic region is at the top of the bar, followed in order by TE gene, pseudogenes, ncRNA, 3'-UTR, 5'-UTR, intron, and CDS. (B) Distribution of CG-DMPs and CG-N-DMPs along each chromosome, with data normalized to the highest value for each chromosome in parallel to the analysis procedure used by Becker et al. *Nature* 480, 245 (2011). (C) Col-0 methylation analysis taken from FIG. 1c in Becker et al. (Ibid) to demonstrate the similarity of NDMP patterns and the dissimilarity of DMP.

FIG. **16** illustrates *Arabidopsis* F1 plants resulting from crosses of the msh1 chloroplast hemi-complementation line×Col-0 wildtype. Transgene-mediated chloroplast hemi-complementation of msh1 restores the wildtype phenotype. However, crosses of these hemicomplemented lines to Col-0 results in ca. 25% of the plants displaying leaf curl to varying intensities in the F1. The cause of this phenotype is not yet known, but it is no longer visible in derived F2 20 populations.

FIG. 17 illustrates the distribution of flowering time in *Arabidopsis* Col-0, epiF4 and epiF5 lines. Each distribution is plotted based on a minimum of 50 plants.

FIG. 18A, B, C illustrates the validation of differentially 25 methylated regions between arabidopsis lines col-0 and msh1-epif3 using bisulfate sequencing. Alignment of DMR region within AT3G27150 (Target gene of MIR2111-5p). Highlighted Gs (i.e. underlined in the figure) are predicted to be unmethylated in Col-0 and methylated in MSH1-epiF3. 30 The sequences of FIG. 18A, B, and C are provided in the sequence listing as follows: AT3G27150 (SEQ ID NO:27), Col0-MIR2-2 (SEQ ID NO:28), Col0-MIR2-3 (SEQ ID NO:29), Col0-MIR2-4 (SEQ ID NO:30), Col0-MIR2-5 (SEQ ID NO:31), Col0-MIR2-6 (SEQ ID NO:32), Col0- 35 MIR2-10 (SEQ ID NO:33), Col0-MIR2-11 (SEQ ID NO:34), Col0-MIR2-12 (SEQ ID NO:35), Col0-MIR2-26 (SEQ ID NO:36), Col0-MIR2-27 (SEQ ID NO:37), Col0-MIR2-28 (SEQ ID NO:38), Col0-MIR2-29 (SEQ ID NO:39), F3-Mir2-1 (SEQ ID NO:40), F3-Mir2-2 (SEQ ID 40 NO:41), F3-Mir2-4 (SEQ ID NO:42), F3-Mir2-5 (SEQ ID NO:43), F3-Mir2-7 (SEQ ID NO:44), F3-Mir2-11 (SEQ ID NO:45), F3-Mir2-12 (SEQ ID NO:46), F3-Mir2-15 (SEQ ID NO:47), F3-Mir2-16 (SEQ ID NO:48), F3-Mir2-27 (SEQ ID NO:49), and F3-Mir2-28 (SEQ ID NO:50).

DETAILED DESCRIPTION

I. Definitions

As used herein, the phrase "chromosomal modification" 50 refers to any of: a) an "altered chromosomal loci" and an "altered chromosomal locus"; b) "mutated chromosomal loci", a "mutated chromosomal locus", "chromosomal mutations" and a "chromosomal mutation"; or c) a transgene.

As used herein, the phrases "altered chromosomal loci" 55 (plural) or "altered chromosomal locus (singular) refer to portions of a chromosome that have undergone a heritable and reversible epigenetic change relative to the corresponding parental chromosomal loci. Heritable and reversible changes in altered chromosomal loci include, but are not 60 limited to, methylation of chromosomal DNA, and in particular, methylation of cytosine residues to 5-methylcytosine residues, and/or post-translational modification of histone proteins, and in particular, histone modifications that include, but are not limited to, acetylation, methylation, 65 ubiquitinylation, phosphorylation, and sumoylation (covalent attachment of small ubiquitin-like modifier proteins). As

12

used herein, "chromosomal loci" refer to loci in chromosomes located in the nucleus of a cell.

As used herein, the term "comprising" means "including but not limited to".

As used herein, the phrases "mutated chromosomal loci" (plural) (plural), "mutated chromosomal locus" (singular), 'chromosomal mutations" and "chromosomal mutation' refer to portions of a chromosome that have undergone a heritable genetic change in a nucleotide sequence relative to the nucleotide sequence in the corresponding parental chromosomal loci. Mutated chromosomal loci comprise mutations that include, but are not limited to, nucleotide sequence inversions, insertions, deletions, substitutions, or combinations thereof. In certain embodiments, the mutated chromosomal loci can comprise mutations that are reversible. In this context, reversible mutations in the chromosome can include, but are not limited to, insertions of transposable elements, defective transposable elements, and certain inversions. In certain embodiments, the chromosomal loci comprise mutations are irreversible. In this context, irreversible mutations in the chromosome can include, but are not limited to, deletions.

As used herein, the term "discrete variation" or " V_D " refers to distinct, heritable phenotypic variation that includes traits of male sterility, dwarfing, variegation, and/or delayed flowering time that can be observed either in any combination or in isolation.

As used herein, the term "MSH-dr" refers to changes in plant tillering, height, internode elongation and stomatal density that are observed in plants subjected to MSH1 suppression.

As used herein, the phrase "quantitative variation" or " $V_{\mathcal{Q}}$ " refers to phenotypic variation that is observed in individual progeny lines derived from outcrosses of plants where MSH1 expression was suppressed and that exhibit discrete variation to other plants.

As used herein the terms "microRNA" or "miRNA" refers to both a miRNA that is substantially similar to a native miRNA that occurs in a plant as well as to an artificial miRNA. In certain embodiments, a transgene can be used to produce either a miRNA that is substantially similar to a native miRNA that occurs in a plant or an artificial miRNA.

As used herein, the phrase "obtaining a nucleic acid associated with the altered chromosomal locus" refers to any method that provides for the physical separation or enrichment of the nucleic acid associated with the altered chromosomal locus from covalently linked nucleic that has not been altered. In this context, the nucleic acid does not necessarily comprise the alteration (i.e. such as methylation) but at least comprises one or more of the nucleotide base or bases that are altered. Nucleic acids associated with an altered chromosomal locus can thus be obtained by methods including, but not limited to, molecular cloning, PCR, or direct synthesis based on sequence data.

The phrase "operably linked" as used herein refers to the joining of nucleic acid sequences such that one sequence can provide a required function to a linked sequence. In the context of a promoter, "operably linked" means that the promoter is connected to a sequence of interest such that the transcription of that sequence of interest is controlled and regulated by that promoter. When the sequence of interest encodes a protein and when expression of that protein is desired, "operably linked" means that the promoter is linked to the sequence in such a way that the resulting transcript will be efficiently translated. If the linkage of the promoter to the coding sequence is a transcriptional fusion and expression of the encoded protein is desired, the linkage is

made so that the first translational initiation codon in the resulting transcript is the initiation codon of the coding sequence. Alternatively, if the linkage of the promoter to the coding sequence is a translational fusion and expression of the encoded protein is desired, the linkage is made so that the 5 first translational initiation codon contained in the 5' untranslated sequence associated with the promoter is linked such that the resulting translation product is in frame with the translational open reading frame that encodes the protein desired. Nucleic acid sequences that can be operably linked include, but are not limited to, sequences that provide gene expression functions (i.e., gene expression elements such as promoters, 5' untranslated regions, introns, protein coding regions, 3' untranslated regions, polyadenylation sites, and/ or transcriptional terminators), sequences that provide DNA 15 transfer and/or integration functions (i.e., site specific recombinase recognition sites, integrase recognition sites), sequences that provide for selective functions (i.e., antibiotic resistance markers, biosynthetic genes), sequences that provide scoreable marker functions (i.e., reporter genes), 20 sequences that facilitate in vitro or in vivo manipulations of the sequences (i.e., polylinker sequences, site specific recombination sequences, homologous recombination sequences), and sequences that provide replication functions (i.e., bacterial origins of replication, autonomous replication 25 sequences, centromeric sequences).

As used herein, the phrase "suppressing expression of MSH1 gene(s)" refers to any genetic or environmental manipulation that provides for decreased levels of functional MSH1 activity in a plant or plant cell relative to the levels of functional MSH1 activity that occur in an otherwise isogenic plant or plant cell that had not been subjected to this genetic or environmental manipulation.

As used herein, the term "transgene", in the context of a chromosomal modification, refers to any DNA from a heterologous source that has been integrated into a chromosome that is stably maintained in a host cell. In this context, heterologous sources for the DNA include, but are not limited to, DNAs from an organism distinct from the host cell organism, species distinct from the host cell species, 40 varieties of the same species that are either distinct varieties or identical varieties, DNA that has been subjected to any in vitro modification, recombinant DNA, and any combination thereof.

As used herein, the term "non-regenerable" refers to a 45 plant part or plant cell that can not give rise to a whole plant. II. Description Overview

Methods for introducing heritable and epigenetic and/or genetic variation that result in plants that exhibit useful traits are provided herewith along with plants, plant seeds, plant 50 parts, plant cells, and processed plant products obtainable by these methods. In certain embodiments, methods provided herewith can be used to introduce epigenetic and/or genetic variation into varietal or non-hybrid plants that result in useful traits as well as useful plants, plant parts including, 55 but not limited to, seeds, plant cells, and processed plant products that exhibit, carry, or otherwise reflect benefits conferred by the useful traits. In other embodiments, methods provided herewith can be used to introduce epigenetic and/or genetic variation into plants that are also amenable to 60 hybridization.

In most embodiments, methods provided herewith involve suppressing expression of the plant MSH1 gene, restoring expression of a functional plant MSH1 gene, and selecting progeny plants that exhibit one or more useful 65 traits. In certain embodiments, these useful traits are associated with either one or more altered chromosomal loci that

14

have undergone a heritable and reversible epigenetic change, with one or more mutated chromosomal loci that have undergone a heritable genetic change, or combinations thereof.

III. Suppression of MSH1 Expression in Plants or Plant Cells.

In general, methods provided herewith for introducing epigenetic and/or genetic variation plants simply require that MSH1 expression be suppressed for a time sufficient to introduce the variation. As such, a wide variety of MSH 1 suppression methods can be employed to practice the methods provided herewith and the methods are not limited to a particular suppression technique.

Since both the MSH1 gene and the effects of MSH1 gene depletion appear to be highly conserved in plants, it is further anticipated that the methods provided herein can be applied to a variety of different plants or plant cells. Sequences of MSH1 genes or fragments thereof from Arabidopsis, soybean, Zea mays, Sorghum, rice, Brachypodium, Vitis vinifera, cotton, and cucumber are provided herewith. In certain embodiments, such genes may be used directly in either the homologous or a heterologous plant species to provide for suppression of the endogenous MSH1 gene in either the homologous or heterologous plant species. A non-limiting, exemplary demonstration where a MSH1 gene from one species was shown to be effective in suppressing the endogenous MSH1 gene in both a homologous and a heterologous species is provided by Sandhu et al. 2007, where a transgene that provides for an MSH1 inhibitory RNA (RNAi) with tomato MSH1 sequences was shown to inhibit the endogenous MSH1 genes of both tomato and tobacco. A transgene that provides for an MSH1 inhibitory RNA (RNAi) with maize MSH1 sequences can inhibit the endogenous MSH1 genes of millet, sorghum, and maize. MSH1 genes from other plants including, but not limited to, cotton, canola, wheat, barley, flax, oat, rye, turf grass, sugarcane, alfalfa, banana, broccoli, cabbage, carrot, cassava, cauliflower, celery, citrus, a cucurbit, eucalyptus, garlic, grape, onion, lettuce, pea, peanut, pepper, potato, poplar, pine, sunflower, safflower, soybean, strawberry, sugar beet, sweet potato, tobacco, cassava, cauliflower, celery, citrus, cotton, a cucurbit, eucalyptus, garlic, grape, onion, lettuce, pea, peanut, pepper, potato, poplar, pine, sunflower, safflower, strawberry, sugar beet, sweet potato, tobacco, cassava, cauliflower, celery, citrus, cucurbits, eucalyptus, garlic, grape, onion, lettuce, pea, peanut, pepper, poplar, pine, sunflower, safflower, sovbean, strawberry, sugar beet, tobacco, Jatropha, Camelina, and Agave can be obtained by a variety of techniques and used to suppress expression of either the corresponding MSH1 gene in those plants or the MSH1 gene in a distinct plant. Methods for obtaining MSH1 genes for various plants include, but are not limited to, techniques such as: i) searching amino acid and/or nucleotide sequence databases comprising sequences from the plant species to identify the MSH1 gene by sequence identity comparisons; ii) cloning the MSH1 gene by either PCR from genomic sequences or RT-PCR from expressed RNA; iii) cloning the MSH1 gene from a genomic or cDNA library using PCR and/or hybridization based techniques; iv) cloning the MSH1 gene from an expression library where an antibody directed to the MSH1 protein is used to identify the MSH1 containing clone; v) cloning the MSH1 gene by complementation of an msh1 mutant or MSH1 deficient plant; or vi) any combination of (i), (ii), (iii), (iv), and/or (v). Recovery of the MSH1 gene from the plant can be readily determined or confirmed by constructing a plant transformation vector that provides for suppression of the gene,

transforming the plants with the vector, and determining if plants transformed with the vector exhibit the characteristic responses that are typically observed in various plant species when MSH1 expression is suppressed that include leaf variegation, cytoplasmic male sterility (CMS), a reduced 5 growth-rate phenotype, delayed or non-flowering phenotype, and enhanced susceptibility to pathogens.

In certain embodiments, MSH1 genes or fragments thereof used in the methods provided herein will have nucleotide sequences with at least 50%, 60%, 70%, 80%, 10 90%, 95%, 98%, 99%, or 100% nucleotide sequence identity to one or more of the MSH1 genes or fragments thereof provided herein that include, but are not limited to, SEQ ID NO:1, SEQ ID NO: 3-10, and SEQ ID NO:14. In certain embodiments, MSH1 genes or fragments thereof used in the 15 methods provided herein encode MSH1 proteins or portions thereof will have amino acid sequences with at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% amino acid sequence identity to one or more of the MSH1 proteins provided herein that include, but are not limited to, SEO ID 20 NO:2, and the MSH1 proteins encoded by SEQ ID NO: 3-10. In certain embodiments, MSH1 genes or fragments thereof used in the methods provided herein will have nucleotide sequences with at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% nucleotide sequence identity 25 to one or more of the MSH1 genes fragments thereof, orthologs thereof, or homologs thereof, provided herein that include, but are not limited to, SEQ ID NO:51 and SEQ ID NO:52. In certain embodiments, MSH1 genes or fragments thereof used in the methods provided herein encode MSH1 30 proteins or portions thereof will have amino acid sequences with at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, or 100% amino acid sequence identity to one or more of the MSH1 proteins or MSH1 homologs provided herein that include, but are not limited to, the proteins encoded by SEQ 35 ID NO:51 and SEQ ID NO:52. MSH1 genes from plants other than those provided herein can also be identified by the encoded DNA binding (Domain I), ATPase (Domain V), and carboxy-terminal GIY-YIG type endonuclease (Domain VI) domains that characterize many MSH1 genes (Abdelnoor et 40 al. 2006). In this regard, it is anticipated that MSH1 nucleic acid fragments of 18 to 20 nucleotides, but more preferably 21 nucleotides or more, can be used to effect suppression of the endogenous MSH1 gene. In certain embodiments, MSH1 nucleic acid fragments of at least 18, 19, 20, or 21 45 nucleotides to about 50, 100, 200, 500, or more nucleotides can be used to effect suppression of the endogenous MSH1 gene.

In certain embodiments, suppression of MSH1 in a plant is effected with a transgene. Transgenes that can be used to 50 suppress expression of MSH1 include, but are not limited to, transgenes that produce dominant-negative mutants of MSH1, a small inhibitory RNA (siRNA), a microRNA (miRNA), a co-suppressing sense RNA, and/or an anti-sense RNA that provide for inhibition of the endogenous MSH1 55 gene. US patents incorporated herein by reference in their entireties that describe suppression of endogenous plant genes by transgenes include U.S. Pat. Nos. 7,109,393, 5,231,020 and 5,283,184 (co-suppression methods); and U.S. Pat. Nos. 5,107,065 and 5,759,829 (antisense methods). 60 In certain embodiments, transgenes specifically designed to produce double-stranded RNA (dsRNA) molecules with homology to the MSH1 gene can be used to decrease expression of the endogenous MSH1 gene. In such embodiments, the sense strand sequences of the dsRNA can be 65 separated from the antisense sequences by a spacer sequence, preferably one that promotes the formation of a

16

dsRNA (double-stranded RNA) molecule. Examples of such spacer sequences include, but are not limited to, those set forth in Wesley et al., Plant J., 27(6):581-90 (2001), and Hamilton et al., Plant J., 15:737-746 (1998). One exemplary and non-limiting vector that has been shown to provide for suppression of MSH1 in tobacco and tomato has been described by Sandhu et al., 2007 where an intron sequence separates the sense and antisense strands of the MSH1 sequence.

În certain embodiments, transgenes that provide for MSH1 suppression can comprise regulated promoters that provide for either induction or down-regulation of operably linked MSH1 inhibitory sequences. In this context, MSH1 inhibitory sequences can include, but are not limited to, dominant-negative mutants of MSH1, a small inhibitory RNA (siRNA), a microRNA (miRNA), a co-suppressing sense RNA, and/or an anti-sense RNA that provide for inhibition of the endogenous MSH1 gene of a plant. Such promoters can provide for suppression of MSH1 during controlled time periods by either providing or withholding the inducer or down regulator. Inducible promoters include, but are not limited to, a PR-1a promoter (US Patent Application Publication Number 20020062502) or a GST II promoter (WO 1990/008826 A1). In other embodiments, both a transcription factor that can be induced or repressed as well as a promoter recognized by that transcription factor and operably linked to the MSH1 inhibitory sequences are provided. Such transcription factor/promoter systems include, but are not limited to: i) RF2a acidic domainecdysone receptor transcription factors/cognate promoters that can be induced by methoxyfenozide, tebufenozide, and other compounds (US Patent Application Publication Number 20070298499); ii) chimeric tetracycline repressor transcription factors/cognate chimeric promoters that can be repressed or de-repressed with tetracycline (Gatz, C., et al. (1992). Plant J. 2, 397-404), and the like.

In still other embodiments, transgenic plants are provided where the transgene that provides for MSH1 suppression is flanked by sequences that provide for removal for the transgene. Such sequences include, but are not limited to, transposable element sequences that are acted on by a cognate transposase. Non-limiting examples of such systems that have been used in transgenic plants include the cre-lox and FLP-FRT systems.

MSH1 suppression can be readily identified or monitored by molecular techniques. In certain embodiments where the endogenous MSH1 is intact but its expression is inhibited. production or accumulation of the RNA encoding MSH1 can be monitored. Molecular methods for monitoring MSH1 RNA expression levels include, but are not limited to, use of semi-quantitive or quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) techniques. The use of semi-quantitive PCR techniques to monitor MSH1 suppression resulting from RNAi mediated suppression of MSH1 has been described (Sandhu et al. 2007). Various quantitative RT-PCR procedures including, but not limited to, Tag-ManTM reactions (Applied Biosystems, Foster City, Calif. US), use of ScorpionTM or Molecular BeaconTM probes, or any of the methods disclosed in Bustin, S. A. (Journal of Molecular Endocrinology (2002) 29, 23-39) can be used. It is also possible to use other RNA quantitation techniques such as Quantitative Nucleic Acid Sequence Based Amplification (Q-NASBATM) or the InvaderTM technology (Third Wave Technologies, Madison, Wis.).

In certain embodiments where MSH1 suppression is achieved by use of a mutation in the endogenous MSH1 gene of a plant, the presence or absence of that mutation in

the genomic DNA can be readily determined by a variety of techniques. Certain techniques can also be used that provide for identification of the mutation in a hemizygous state (i.e. where one chromosome carries the mutated msh1 gene and the other chromosome carries the wild type MSH1 gene). 5 Mutations in MSH1 DNA sequences that include insertions, deletions, nucleotide substitutions, and combinations thereof can be detected by a variety of effective methods including, but not limited to, those disclosed in U.S. Pat. Nos. 5,468, 613, 5,217,863; 5,210,015; 5,876,930; 6,030,787; 6,004, 10 744; 6,013,431; 5,595,890; 5,762,876; 5,945,283; 5,468, 613; 6,090,558; 5,800,944; 5,616,464; 7,312,039; 7,238, 476; 7,297,485; 7,282,355; 7,270,981 and 7,250,252 all of which are incorporated herein by reference in their entireties. For example, mutations can be detected by hybridiza- 15 tion to allele-specific oligonucleotide (ASO) probes as disclosed in U.S. Pat. Nos. 5,468,613 and 5,217,863. U.S. Pat. No. 5,210,015 discloses detection of annealed oligonucleotides where a 5' labelled nucleotide that is not annealed is released by the 5'-3' exonuclease activity. U.S. Pat. No. 20 6,004,744 discloses detection of the presence or absence of mutations in DNA through a DNA primer extension reaction. U.S. Pat. No. 5,468,613 discloses allele specific oligonucleotide hybridizations where single or multiple nucleotide variations in nucleic acid sequence can be detected by 25 a process in which the sequence containing the nucleotide variation is amplified, affixed to a support and exposed to a labeled sequence-specific oligonucleotide probe. Mutations can also be detected by probe ligation methods as disclosed in U.S. Pat. No. 5,800,944 where sequence of interest is 30 amplified and hybridized to probes followed by ligation to detect a labeled part of the probe. U.S. Pat. Nos. 6,613,509 and 6,503,710, and references found therein provide methods for identifying mutations with mass spectroscopy. These various methods of identifying mutations are intended to be 35 exemplary rather than limiting as the methods of the present invention can be used in conjunction with any polymorphism typing method to identify the presence of absence of mutations in an MSH1 gene in genomic DNA samples. Furthermore, genomic DNA samples used can include, but 40 are not limited to, genomic DNA isolated directly from a plant, cloned genomic DNA, or amplified genomic DNA.

Mutations in endogenous plant MSH1 genes can be obtained from a variety of sources and by a variety of techniques. A homologous replacement sequence containing 45 one or more loss of function mutations in the MSH1 gene and homologous sequences at both ends of the double stranded break can provide for homologous recombination and substitution of the resident wild-type MSH1 sequence in the chromosome with a msh1 replacement sequence with the 50 loss of function mutation(s). Such loss of function mutations include, but are not limited to, insertions, deletions, and substitutions of sequences within an MSH1 gene that result in either a complete loss of MSH1 function or a loss of MSH1 function sufficient to elicit alterations (i.e. heritable 55 and reversible epigenetic changes) in other chromosomal loci or mutations in other chromosomal loci. Loss-of-function mutations in MSH1 include, but are not limited to, frameshift mutations, pre-mature translational stop codon insertions, deletions of one or more functional domains that 60 include, but are not limited to, a DNA binding (Domain I), an ATPase (Domain V) domain, and/or a carboxy-terminal GIY-YIG type endonuclease domain, and the like. Also provided herein are mutations analogous the Arabidopsis msh1 mutation that are engineered into endogenous MSH1 65 plant gene to obtain similar effects. Methods for substituting endogenous chromosomal sequences by homologous double

stranded break repair have been reported in tobacco and maize (Wright et al., Plant J. 44, 693, 2005; D'Halluin, et al., Plant Biotech. J. 6:93, 2008). A homologous replacement msh1 sequence (i.e. which provides a loss of function mutation in an MSH1 sequence) can also be introduced into a targeted nuclease cleavage site by non-homologous end joining or a combination of non-homologous end joining and homologous recombination (reviewed in Puchta, J. Exp. Bot. 56, 1, 2005; Wright et al., Plant J. 44, 693, 2005). In certain embodiments, at least one site specific double stranded break can be introduced into the endogenous MSH1 gene by a meganuclease. Genetic modification of meganucleases can provide for meganucleases that cut within a recognition sequence that exactly matches or is closely related to specific endogenous MSH1 target sequence (WO/06097853A1, WO/06097784A1, WO/04067736A2, U.S. 20070117128A1). It is thus anticipated that one can select or design a nuclease that will cut within a target MSH1 sequence. In other embodiments, at least one site specific double stranded break can be introduced in the endogenous MSH1 target sequence with a zinc finger nuclease. The use of engineered zinc finger nuclease to provide homologous recombination in plants has also been disclosed (WO 03/080809, WO 05/014791, WO 07014275, WO 08/021207). In still other embodiments, mutations in endogenous MSH1 genes can be identified through use of the TILLING technology (Targeting Induced Local Lesions in Genomes) as described by Henikoff et al. where traditional chemical mutagenesis would be followed by high-throughput screening to identify plants comprising point mutations or other mutations in the endogenous MSH1 gene (Henikoff et al., Plant Physiol. 2004, 135:630-636).

In certain embodiments, MSH1 suppression can be effected by exposing whole plants, or reproductive structures of plants, to stress conditions that result in suppression of endogenous MSH1 gene. Such stress conditions include, but are not limited to, high light stress, and heat stress. Exemplary and non-limiting high light stress conditions include continuous exposure to about 300 to about 1200 µmol photons/m2.s for about 24 to about 120 hours. Exemplary and non-limiting heat stress conditions include continuous exposure to temperatures of about 32° C. to about 37° C. for about 2 hours to about 24 hours. Exemplary and non-limiting heat, light, and other environmental stress conditions also that can provide for MSH1 suppression are also disclosed for heat (Shedge et al. 2010), high light stress (Xu et al. 2011) and other environmental stress conditions (Hruz et al. 2008).

Methods where MSH1 suppression is effected in cultured plant cells are also provided herein. In certain embodiments, MSH1 suppression can be effected by culturing plant cells under stress conditions that result in suppression of endogenous MSH1 gene. Such stress conditions include, but are not limited to, high light stress. Exemplary and non-limiting high light stress conditions include continuous exposure to about 300 to about 1200 µmol photons/m2.s for about 24 to about 120 hours. Exemplary and non-limiting heat stress conditions include continuous exposure to temperatures of about 32° C. to about 37° C. for about 2 hours to about 24 hours. Exemplary and non-limiting heat, light, and other environmental stress conditions also that can provide for MSH1 suppression are also disclosed for heat (Shedge et al. 2010), high light stress (Xu et al. 2011) and other environmental stress conditions (Hruz et al. 2008). In certain embodiments, MSH1 suppression is effected in cultured plant cells by introducing a nucleic acid that provides for such suppression into the plant cells. Nucleic acids that can

be used to provide for suppression of MSH1 in cultured plant cells include, but are not limited to, transgenes that produce a small inhibitory RNA (siRNA), a microRNA (miRNA), a co-suppressing sense RNA, and/or an anti-sense RNA directed to the MSH1 gene. Nucleic acids that can be 5 used to provide for suppression of MSH1 in cultured plant cells include, but are not limited to, a small inhibitory RNA (siRNA) or a microRNA (miRNA) directed against the endogenous MSH1 gene. RNA molecules that provide for inhibition of MSH1 can be introduced by electroporation. 10 Introduction of inhibitory RNAs to cultured plant cells to inhibit target genes can in certain embodiments be accomplished as disclosed in Vanitharani et al. (Proc Natl Acad Sci USA., 2003, 100(16):9632-6), Qi et al. (Nucleic Acids Res. 2004 Dec. 15;32(22):e179), or J. Cheon et al. (Microbiol. 15 Biotechnol. (2009), 19(8), 781-786).

MSH1 suppression can also be readily identified or monitored by traditional methods where plant phenotypes are observed. For example, MSH1 suppression can be identified or monitored by observing organellar effects that include 20 leaf variegation, cytoplasmic male sterility (CMS), a reduced growth-rate phenotype, delayed or non-flowering phenotype, and/or enhanced susceptibility to pathogens. Phenotypes indicative of MSH1 suppression in various plants are shown in FIGS. 1, 2, and 3. These phenotypes that 25 are associated with MSH1 suppression are referred to herein as "discrete variation" (V_D). MSH1 suppression can also produce changes in plant tillering, height, internode elongation and stomatal density (referred to herein as "MSH1dr") that can be used to identify or monitor MSH1 suppres- 30 sion in plants. Other biochemical and molecular traits can also be used to identify or monitor MSH1 suppression in plants MSH1 suppression. Such molecular traits can include, but are not limited to, changes in expression of genes involved in cell cycle regulation, Giberrellic acid catabo- 35 lism, auxin biosynthesis, auxin receptor expression, flower and vernalization regulators (i.e. increased FLC and decreased SOC1 expression), as well as increased miR156 and decreased miR172 levels. Such biochemical traits can include, but are not limited to, up-regulation of most com- 40 pounds of the TCA, NAD and carbohydrate metabolic pathways, down-regulation of amino acid biosynthesis, depletion of sucrose in certain plants, increases in sugars or sugar alcohols in certain plants, as well as increases in ascorbate, alphatocopherols, and stress-responsive flavones 45 apigenin, and apigenin-7-oglucoside. isovitexin, kaempferol 3-O-beta-glucoside, luteolin-7-O-glucoside, and vitexin. It is further contemplated that in certain embodiments, a combination of both molecular, biochemical, and traditional methods can be used to identify or monitor MSH1 suppres- 50 sion in plants.

IV. Recovery, Selfing, and Outcrossing of Progeny of MSH1 Suppressed Plants

A variety of methods that provide for suppression of MSH1 in a plant followed by recovery of progeny plants 55 where MSH1 function is restored are provided herein. In certain embodiments, such progeny plants can be recovered by downregulating expression of an MSH1-inhibiting transgene or by removing the MSH1-inhibiting transgene with a transposase. In certain embodiments of the methods provided herein, MSH1 is suppressed in a target plant or plant cell and progeny plants that express MSH1 are recovered by traditional genetic techniques. In one exemplary and nonlimiting embodiment, progeny plants can be obtained by selfing a plant that is heterozygous for the transgene that 65 provides for MSH1 segregation. Selling of such heterozygous plants (or selfing of heterozygous plants regenerated

20

from plant cells) provides for the transgene to segregate out of a subset of the progeny plant population. Where MSH1 is suppressed by use of a recessive mutation in an endogenous MSH1 gene (i.e. an msh1 plant), msh1/msh1 plants can, in yet another exemplary and non-limiting embodiment, be crossed to MSH1 plants and then selfed to obtain progeny plants that are homozygous for a functional, wild-type MSH1 allele. In other embodiments, MSH1 is suppressed in a target plant or plant cell and progeny plants that express MSH1 are recovered by molecular genetic techniques. Non limiting and exemplary embodiments of such molecular genetic techniques include: i) downregulation of an MSH1 suppressing transgene under the control of a regulated promoter by withdrawal of an inducer required for activity of that promoter or introduction of a repressor of that promoter; or, ii) exposure of the an MSH1 suppressing transgene flanked by transposase recognition sites to the cognate transposase that provides for removal of that trans-

In certain embodiments of the methods provided herein. progeny plants derived from plants where MSH1 expression was suppressed that exhibit male sterility, dwarfing, variegation, and/or delayed flowering time and express functional MSH1 are obtained and maintained as independent breeding lines. It has been found that such phenotypes appear to sort, so that it is feasible to select a cytoplasmic male sterile plant displaying normal growth rate and no variegation, for example, or a stunted, male fertile plant that is highly variegated. We refer to this phenomenon herein as discrete variation (V_D) . An exemplary and non-limiting illustration of this phenomenon as it occurs in selfed plant populations that have lost an MSH1-inhibiting transgene by segregation is provided in FIG. 6. It is further contemplated that such individual lines that exhibit discrete variation (V_D) can be obtained by any of the aforementioned traditional genetic techniques, molecular genetic techniques, or combinations thereof.

Individual lines obtained from plants where MSH1 expression was suppressed that exhibit discrete variation (V_D) can be crossed to other plants to obtain progeny plants that lack the phenotypes associated with discrete variation (V_D) (i.e. male sterility, dwarfing, variegation, and/or delayed flowering time). It has surprisingly been found that progeny of such outcrosses can be selfed to obtain individual progeny lines that exhibit significant phenotypic variation. Such phenotypic variation that is observed in these individual progeny lines derived from outcrosses of plants where MSH1 expression was suppressed and that exhibit discrete variation to other plants is herein referred to as "quantitative variation" (V_O) . Certain individual progeny plant lines obtained from the outcrosses of plants where MSH1 expression was suppressed to other plants can exhibit useful phenotypic variation where one or more traits are improved relative to either parental line and can be selected. Useful phenotypic variation that can be selected in such individual progeny lines includes, but is not limited to, increases in fresh and dry weight biomass relative to either parental line. An exemplary and non-limiting illustration of this phenomenon as it occurs in F2 progeny of outcrosses of plants that exhibit discrete variation to plants that do not exhibit discrete variation is provided in FIG. 6.

In certain embodiments, an outcross of an individual line exhibiting discrete variability can be to a plant that has not been subjected to MSH1 suppression but is otherwise isogenic to the individual line exhibiting discrete variation. In certain exemplary embodiments, a line exhibiting discrete variation is obtained by suppressing MSH1 in a given

germplasm and can outcrossed to a plant having that same germplasm that was not subjected to MSH1 suppression. In other embodiments, an outcross of an individual line exhibiting discrete variability can be to a plant that has not been subjected to MSH1 suppression but is not isogenic to the 5 individual line exhibiting discrete variation. Thus, in certain embodiments, an outcross of an individual line exhibiting discrete variability can also be to a plant that comprises one or more chromosomal polymorphisms that do not occur in the individual line exhibiting discrete variability, to a plant 10 derived from partially or wholly different germplasm, or to a plant of a different heterotic group (in instances where such distinct heterotic groups exist). It is also recognized that such an outcross can be made in either direction. Thus, an individual line exhibiting discrete variability can be used as 15 either a pollen donor or a pollen recipient to a plant that has not been subjected to MSH1 suppression in such outcrosses. In certain embodiments, the progeny of the outcross are then selfed to establish individual lines that can be separately screened to identify lines with improved traits relative to 20 parental lines. Such individual lines that exhibit the improved traits are then selected and can be propagated by further selfing. An exemplary and non-limiting illustration of this procedure where F2 progeny of outcrosses of plants that exhibit discrete variation to plants that do not exhibit 25 discrete variation are obtained is provided in FIG. 6. Such F2 progeny lines are screened for desired trait improvements relative to the parental plants and lines exhibiting such improvements are selected.

V. Comparing and Selecting Altered Chromosomal Loci in 30 Plants that can Confer a Useful Trait

Altered chromosomal loci that can confer useful traits can also be identified and selected by performing appropriate comparative analyses of reference plants that do not exhibit the useful traits and test plants obtained from a parental plant 35 or plant cell that had been subjected to MSH1 suppression and obtaining either the altered loci or plants comprising the altered loci. It is anticipated that a variety of reference plants and test plants can be used in such comparisons and selections. In certain embodiments, the reference plants that do 40 not exhibit the useful trait include, but are not limited to, any of: a) a wild-type plant; b) a distinct subpopulation of plants within a given F2 population of plants of a given plant line (where the F2 population is any applicable plant type or variety obtained in the manner shown in FIG. 6); c) an F1 45 population exhibiting a wild type phenotype (where the F1 population is any applicable plant type or variety obtained in the manner shown in FIG. 6); and/or, d) a plant that is isogenic to the parent plants or parental cells of the test plants prior to suppression of MSH1 in those parental plants 50 or plant cells (i.e. the reference plant is isogenic to the plants or plant cells that were later subjected to MSH1 suppression to obtain the test plants). In certain embodiments, the test plants that exhibit the useful trait include, but are not limited to, any of: a) any non-transgenic segregants that exhibit the 55 useful trait and that were derived from parental plants or plant cells that had been subjected to transgene mediated MSH1 suppression, b) a distinct subpopulation of plants within a given F2 population of plants of a given plant line that exhibit the useful trait (where the F2 population is any 60 applicable plant type or variety obtained in the manner shown in FIG. 6); (c) any progeny plants obtained from the plants of (a) or (b) that exhibit the useful trait; or d) a plant or plant cell that had been subjected to MSH1 suppression that exhibit the useful trait.

In general, an objective of these comparisons is to identify differences in the small RNA profiles and/or methylation of 22

certain chromosomal DNA loci between test plants that exhibit the useful traits and reference plants that do not exhibit the useful traits. Altered loci thus identified can then be isolated or selected in plants to obtain plants exhibiting the useful traits.

In certain embodiments, altered chromosomal loci can be identified by identifying small RNAs that are up or down regulated in the test plants (in comparison to reference plants). This method is based in part on identification of altered chromosomal loci where small interfering RNAs direct the methylation of specific gene targets by RNA-directed DNA methylation (RdDM). The RNA-directed DNA methylation (RdDM) process has been described (Chinnusamy V et al. Sci China Ser C-Life Sci. (2009) 52(4): 331-343). Any applicable technology platform can be used to compare small RNAs in the test and reference plants, including, but not limited to, microarray-based methods (Franco-Zorilla et al. Plant J. 2009 59(5):840-50), deep sequencing based methods (Wang et al. The Plant Cell 21:1053-1069 (2009)), and the like.

In certain embodiments, altered chromosomal loci can be identified by identifying histone proteins associated with a locus and that are methylated or acylated in the test plants (in comparison to reference plants). The analysis of chromosomal loci associated with methylated or acylated histones can be accomplished by enriching and sequencing those loci using antibodies that recognize methylated or acylated histones. Identification of chromosomal regions associated with methylation or acetylation of specific lysine residues of histone H3 by using antibodies specific for H3K4me3, H3K9ac, H3K27me3, and H3K36me3 has been described (Li et al., Plant Cell 20:259-276, 2008; Wang et al. The Plant Cell 21:1053-1069 (2009).

In certain embodiments, altered chromosomal loci can be identified by identifying chromosomal regions (genomic DNA) that has an altered methylation status in the test plants (in comparison to reference plants). An altered methylation status can comprise either the presence or absence of methvlation in one or more chromosomal loci of a test plant comparison to a reference plant. Any applicable technology platform can be used to compare the methylation status of chromosomal loci in the test and reference plants. Applicable technologies for identifying chromosomal loci with changes in their methylation status include, but not limited to, methods based on immunoprecipitation of DNA with antibodies that recognize 5-methylcytidine, methods based on use of methylation dependent restriction endonucleases and PCR such as McrBC-PCR methods (Rabinowicz, et al. Genome Res. 13: 2658-2664 2003; Li et al., Plant Cell 20:259-276, 2008), sequencing of bisulfite-converted DNA (Frommer et al. Proc. Natl. Acad. Sci. U.S.A. 89 (5): 1827-31; Tost et al. BioTechniques 35 (1): 152-156, 2003), methylation-specific PCR analysis of bisulfite treated DNA (Herman et al. Proc. Natl. Acad. Sci. U.S.A. 93 (18): 9821-6, 1996), deep sequencing based methods (Wang et al. The Plant Cell 21:1053-1069 (2009)), methylation sensitive single nucleotide primer extension (MsSnuPE; Gonzalgo and Jones Nucleic Acids Res. 25 (12): 2529-2531, 1997), fluorescence correlation spectroscopy (Umezu et al. Anal Biochem. 415(2):145-50, 2011), single molecule real time sequencing methods (Flusberg et al. Nature Methods 7, 461-465), high resolution melting analysis (Wojdacz and Dobrovic (2007) Nucleic Acids Res. 35 (6): e41), and the

VI. Introducing a Chromosomal Modification Associated with a Useful Trait into a Plant

Methods for introducing various chromosomal modifications that can confer a useful trait into a plant, as well as the plants, plant parts, and products of those plant parts are also 5 provided herein. Chromosomal alterations and/or chromosomal mutations induced by suppression of MSH1 can be identified as described herein. Once identified, chromosomal modifications including, but not limited to, chromosomal alterations, chromosomal mutations, or transgenes that pro- 10 vide for the same genetic effect as the chromosomal alterations and/or chromosomal mutations induced by suppression of MSH1 can be introduced into host plants to obtain plants that exhibit the desired trait. In this context, the "same genetic effect" means that the introduced chromosomal 15 modification provides for an increase and/or a reduction in expression of one or more endogenous plant genes that is similar to that observed in a plant that has been subjected to MSH1 suppression and exhibits the useful trait. In certain embodiments where an endogenous gene is methylated in a 20 plant subjected to MSH1 suppression and exhibits both reduced expression of that gene and a useful trait, chromosomal modifications in other plants that also result in reduced expression of that gene and the useful trait are provided. In certain embodiments where an endogenous 25 gene is demethylated in a plant subjected to MSH1 suppression and exhibits both increased expression of that gene and a useful trait, chromosomal modifications in other plants that also result in increased expression of that gene and that useful trait are provided.

In certain embodiments, the chromosomal modification that is introduced is a chromosomal alteration. Chromosomal alterations including, but not limited to, a difference in a methylation state can be introduced by crossing a plant comprising the chromosomal alteration to a plant that lacks 35 the chromosomal alteration and selecting for the presence of the alteration in F1, F2, or any subsequent generation progeny plants of the cross. In still other embodiments, the chromosomal alterations in specific target genes can be introduced by expression of a siRNA or hairpin RNA 40 targeted to that gene by RNA directed DNA methylation (Chinnusamy V et al. Sci China Ser C-Life Sci. (2009) 52(4): 331-343; Cigan et al. Plant J 43 929-940, 2005; Heilersig et al. (2006) Mol Genet Genomics 275 437-449; Miki and Shimamoto, Plant Journal 56(4):539-49; Okano et 45 al. Plant Journal 53(1):65-77, 2008).

In certain embodiments, the chromosomal modification is a chromosomal mutation. Chromosomal mutations that provide for reductions or increases in expression of an endogenous gene of a chromosomal locus can include, but are not 50 limited to, insertions, deletions, and/or substitutions of nucleotide sequences in a gene. Chromosomal mutations can result in decreased expression of a gene by a variety of mechanisms that include, but are not limited to, introduction of missense codons, frame-shift mutations, premature trans- 55 lational stop codons, promoter deletions, mutations that disrupt mRNA processing, and the like. Chromosomal mutations that result in increased expression of a gene include, but are not limited to, promoter substitutions, removal of negative regulatory elements from the gene, and the like. 60 Chromosomal mutations can be introduced into specific loci of a plant by any applicable method. Applicable methods for introducing chromosomal mutations in endogenous plant chromosomal loci include, but are not limited to, homologous double stranded break repair (Wright et al., Plant J. 44, 65 693, 2005; D'Halluin, et al., Plant Biotech. J. 6:93, 2008), non-homologous end joining or a combination of non24

homologous end joining and homologous recombination (reviewed in Puchta, J. Exp. Bot. 56, 1, 2005; Wright et al., Plant J. 44, 693, 2005), meganuclease-induced, site specific double stranded break repair (WO/06097853A1, WO/06097784A1, WO/04067736A2, U.S. 20070117128A1), and zinc finger nuclease mediated homologous recombination (WO 03/080809, 05/014791, WO 07014275, WO 08/021207). In still other embodiments, desired mutations in endogenous plant chromosomal loci can be identified through use of the TILLING technology (Targeting Induced Local Lesions in Genomes) as described (Henikoff et al., Plant Physiol. 2004, 135:630-636).

In other embodiments, chromosomal modifications that provide for the desired genetic effect can comprise a transgene. Transgenes that can result in decreased expression of an gene by a variety of mechanisms that include, but are not limited to, dominant-negative mutants, a small inhibitory RNA (siRNA), a microRNA (miRNA), a co-suppressing sense RNA, and/or an anti-sense RNA and the like. US patents incorporated herein by reference in their entireties that describe suppression of endogenous plant genes by transgenes include U.S. Pat. Nos. 7,109,393, 5,231,020 and 5,283,184 (co-suppression methods); and U.S. Pat. Nos. 5,107,065 and 5,759,829 (antisense methods). In certain embodiments, transgenes specifically designed to produce double-stranded RNA (dsRNA) molecules with homology to the endogenous gene of a chromosomal locus can be used to decrease expression of that endogenous gene. In such embodiments, the sense strand sequences of the dsRNA can be separated from the antisense sequences by a spacer sequence, preferably one that promotes the formation of a dsRNA (double-stranded RNA) molecule. Examples of such spacer sequences include, but are not limited to, those set forth in Wesley et al., Plant J., 27(6):581-90 (2001), and Hamilton et al., Plant J., 15:737-746 (1998). Vectors for inhibiting endogenous plant genes with transgene-mediated expression of hairpin RNAs are disclosed in U.S. Patent Application Nos. 20050164394, 20050160490, and 20040231016, each of which is incorporated herein by reference in their entirety.

Transgenes that result in increased expression of a gene of a chromosomal locus include, but are not limited to, a recombinant gene fused to heterologous promoters that are stronger than the native promoter, a recombinant gene comprising elements such as heterologous introns, 5' untranslated regions, 3' untranslated regions that provide for increased expression, and combinations thereof. Such promoter, intron, 5' untranslated, 3' untranslated regions, and any necessary polyadenylation regions can be operably linked to the DNA of interest in recombinant DNA molecules that comprise parts of transgenes useful for making chromosomal modifications as provided herein.

Exemplary promoters useful for expression of transgenes include, but are not limited to, enhanced or duplicate versions of the viral CaMV35S and FMV35S promoters (U.S. Pat. No. 5,378,619, incorporated herein by reference in its entirety), the cauliflower mosaic virus (CaMV) 19S promoters, the rice Act1 promoter and the Figwort Mosaic Virus (FMV) 35S promoter (U.S. Pat. No. 5,463,175; incorporated herein by reference in its entirety). Exemplary introns useful for transgene expression include, but are not limited to, the maize hsp70 intron (U.S. Pat. No. 5,424,412; incorporated by reference herein in its entirety), the rice Act1 intron (McElroy et al., 1990, The Plant Cell, Vol. 2, 163-171), the CAT-1 intron (Cazzonnelli and Velten, Plant Molecular Biology Reporter 21: 271-280, September 2003), the

pKANNIBAL intron (Wesley et al., Plant J. 2001 27(6):581-90; Collier et al., 2005, Plant J 43: 449-457), the PIV2 intron (Mankin et al. (1997) Plant Mol. Biol. Rep. 15(2): 186-196) and the "Super Ubiquitin" intron (U.S. Pat. No. 6,596,925, incorporated herein by reference in its entirety; Collier et al., 5005, Plant J 43: 449-457). Exemplary polyadenylation sequences include, but are not limited to, and *Agrobacterium* tumor-inducing (Ti) plasmid nopaline synthase (NOS) gene and the pea ssRUBISCO E9 gene polyadenylation

VII. Screening and Selection of Outcrossed Progeny of MSH1 Suppressed Plants or Plants comprising Modified Chromosomal Loci that Exhibit Improved or Useful Traits

sequences.

Plant lines obtained by the methods provided herein can 15 be screened and selected for a variety of useful traits by using a wide variety of techniques. In particular embodiments provided herein, individual progeny plant lines obtained from the outcrosses of plants where MSH1 expression was suppressed to other plants are screened and selected for the desired useful traits.

In certain embodiments, the screened and selected trait is improved plant yield. In certain embodiments, such yield improvements are improvements in the yield of a plant line 25 relative to one or more parental line(s) under non-stress conditions. Non-stress conditions comprise conditions where water, temperature, nutrients, minerals, and light fall within typical ranges for cultivation of the plant species. 30 Such typical ranges for cultivation comprise amounts or values of water, temperature, nutrients, minerals, and/or light that are neither insufficient nor excessive. In certain embodiments, such yield improvements are improvements in the yield of a plant line relative to parental line(s) under 35 abiotic stress conditions. Such abiotic stress conditions include, but are not limited to, conditions where water, temperature, nutrients, minerals, and/or light that are either insufficient or excessive. Abiotic stress conditions would thus include, but are not limited to, drought stress, osmotic stress, nitrogen stress, phosphorous stress, mineral stress, heat stress, cold stress, and/or light stress. In this context, mineral stress includes, but is not limited to, stress due to insufficient or excessive potassium, calcium, magnesium, 45 iron, manganese, copper, zinc, boron, aluminum, or silicon. In this context, mineral stress includes, but is not limited to, stress due to excessive amounts of heavy metals including, but not limited to, cadmium, copper, nickel, zinc, lead, and chromium.

Improvements in yield in plant lines obtained by the methods provided herein can be identified by direct measurements of wet or dry biomass including, but not limited to, grain, lint, leaves, stems, or seed. Improvements in yield 55 can also be assessed by measuring yield related traits that include, but are not limited to, 100 seed weight, a harvest index, and seed weight. In certain embodiments, such yield improvements are improvements in the yield of a plant line relative to one or more parental line(s) and can be readily determined by growing plant lines obtained by the methods provided herein in parallel with the parental plants. In certain embodiments, field trials to determine differences in yield whereby plots of test and control plants are replicated, and controlled for variation can be employed (Giesbrecht F G and Gumpertz M L. 2004. Planning, Con-

26

struction, and Statistical Analysis of Comparative Experiments. Wiley. New York; Mead, R. 1997. Design of plant breeding trials. In Statistical Methods for Plant Variety Evaluation. eds. Kempton and Fox. Chapman and Hall. London.). Methods for spacing of the test plants (i.e. plants obtained with the methods of this invention) with check plants (parental or other controls) to obtain yield data suitable for comparisons are provided in references that include, but are not limited to, any of Cullis, B. et al. J. Agric. Biol. Env. Stat. 11:381-393; and Besag, J. and Kempton, R A. 1986. Biometrics 42: 231-251.).

In certain embodiments, the screened and selected trait is improved resistance to biotic plant stress relative to the parental lines. Biotic plant stress includes, but is not limited to, stress imposed by plant fungal pathogens, plant bacterial pathogens, plant viral pathogens, insects, nematodes, and herbivores. In certain embodiments, screening and selection of plant lines that exhibit resistance to fungal pathogens including, but not limited to, an Alternaria sp., an Ascochyta sp., a Botrytis sp.; a Cercospora sp., a Colletotrichum sp., a Diaporthe sp., a Diplodia sp., an Erysiphe sp., a Fusarium sp., Gaeumanomyces sp., Helminthosporium sp., Macrophomina sp., a Nectria sp., a Peronospora sp., a Phakopsora sp., Phialophora sp., a Phoma sp., a Phymatotrichum sp., a Phytophthora sp., a Plasmopara sp., a Puccinia sp., a Podosphaera sp., a Pyrenophora sp., a Pyricularia sp, a Pythium sp., a Rhizoctonia sp., a Scerotium sp., a Sclerotinia sp., a Septoria sp., a Thielaviopsis sp., an Uncinula sp, a Venturia sp., and a Verticillium sp. is provided. In certain embodiments, screening and selection of plant lines that exhibit resistance to bacterial pathogens including, but not limited to, an Erwinia sp., a Pseudomonas sp., and a Xanthamonas sp. is provided. In certain embodiments, screening and selection of plant lines that exhibit resistance to insects including, but not limited to, aphids and other piercing/sucking insects such as Lygus sp., lepidoteran insects such as Armigera sp., Helicoverpa sp., Heliothis sp., and Pseudoplusia sp., and coleopteran insects such as Diabroticus sp. is provided. In certain embodiments, screening and selection of plant lines that exhibit resistance to nematodes including, but not limited to, Meloidogyne sp., Heterodera sp., Belonolaimus sp., Ditylenchus sp., Globodera sp., Naccobbus sp., and Xiphinema sp. is provided.

Other useful traits that can be obtained by the methods provided herein include various seed quality traits including, but not limited to, improvements in either the compositions or amounts of oil, protein, or starch in the seed. Still other useful traits that can be obtained by methods provided herein include, but are not limited to, increased biomass, nonflowering, male sterility, digestability, seed filling period, maturity (either earlier or later as desired), reduced lodging, and plant height (either increased or decreased as desired).

In addition to any of the aforementioned traits, particularly useful traits for *sorghum* that can be obtained by the methods provided herein also include, but are not limited to: i) agronomic traits (flowering time, days to flower, days to flower-post rainy, days to flower-rainy; ii) fungal disease resistance (*sorghum* downy mildew resistance—glasshouse, *sorghum* downy mildew resistance-field, *sorghum* grain mold, *sorghum* leaf blight resistance, *sorghum* rust resistance; iii) grain related trait: (Grain dry weight, grain num-

ber, grain number per square meter, Grain weight over panicle. seed color, seed luster, seed size); iv) growth and development stage related traits (basal tillers number, days to harvest, days to maturity, nodal tillering, plant height, plant height-postrainy); v) infloresence anatomy and morphology trait (threshability); vi) Insect damage resistance (sorghum shoot fly resistance-post-rainy, sorghum shoot fly resistance-rainy, sorghum stem borer resistance); vii) leaf related traits (leaf color, leaf midrib color, leaf vein color, 10 flag leaf weight, leaf weight, rest of leaves weight); viii) mineral and ion content related traits (shoot potassium content, shoot sodium content); ix) panicle related traits (number of panicles, panicle compactness and shape, panicle exertion, panicle harvest index, panicle length, panicle weight, panicle weight without grain, panicle width); x) phytochemical compound content (plant pigmentation); xii) spikelet anatomy and morphology traits (glume color, glume covering); xiii) stem related trait (stem over leaf weight, 20 stem weight); and xiv) miscellaneous traits (stover related traits, metabolised energy, nitrogen digestibility, organic matter digestibility, stover dry weight).

EXAMPLES

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

Example 1

Construction of Transgenic Plants that provide for Suppression of MSH1

A vector that provides for suppression of MSH1 in tomato 45 and tobacco was constructed as follows. A segment encoding amino acids 651-870 of the MSH1 protein was derived from a tomato EST sequence (SEQ ID NO:5) by using the primer sequences TOM-CD1F (5'-CGCAGGTATCAC-GAGGCAAGTGCTAAGG-3; SEQ ID NO:11) and TOM- 50 CD1R (5'-ATCCCCAAACAGCCAATTTCGTCCAG-GATCCCCAAACAGCCAATTTCGTCCAGG-3; SEQ ID NO:12) and cloned in forward and reverse orientation, separated by an intron sequence. The base vector, pUCR-NAi-intron harbors the second intron of the Arabidopsis 55 small nuclear riboprotein (At4g02840; SEQ ID NO: 13). The CaMV35S promoter and transcription terminator regulate expression of the construction and the neomycin phosphotransferase II (nptII) reporter gene, and the insert is flanked by right border and left border integration 60 sequences. Agrobacterium tumefaciens strain C58C1/ pMP90 (28) was used for transformation in tobacco (Horsch R B, et al. (1985) Science 227:1229-1231) and tomato (McCormick et al. 1986) Plant Cell Rep 5:81-84).

Millet and *sorghum* RNAi lines were derived by similar 65 procedures and materials, with transformations and plant regeneration carried out according to the procedures of

28

Howe et al. (Plant Cell Rep 25:784-91, 2006). The RNAi vector for millet was directed against the millet MSH1 gene whereas the RNAi vector for sorghum was directed against the sorghum MSH1 gene (SEQ ID NO: 6). Segments encoding 157 amino acids from the MSH1 C-terminal were amplified from total cDNA of pearl millet and sorghum primers: zm-msf8 (5'-GGTTGAGGAGCCT-GAATCTCTGAAGAAC-3'; SEQ ID NO:15) and zm-msr8 (5'-CTCGCCAGAGATTCGAGATATACCGAAG-3'; SEQ ID NO:16). PCR products were cloned in forward and reverse orientation, separated by an intron sequence. The base vector, pUCRNAi-intron, which harbors the second intron of the Arabidopsis small nuclear riboprotein (At4g02840; SEQ ID NO: 13), was provided by H. Cerutti (University of Nebraska, Lincoln, Nebr.). The vector pPTN290, a derivative of pPZP212 (Hajdukiewicz et al. 1994, Plant Mol Biol.; 25(6):989-94), was used to introduce the Msh1-RNAi cassettes under the control of the maize ubiquitin 1 promoter coupled with its first intron, and its transcription is terminated by CaMV 35S terminator. The CaMV 35S promoter and terminator regulate the expression of the neomycin phosphotransferase II (nptII) reporter gene, and the insert is flanked by right border and left border integration sequences. The Agrobacterium tumefaciens strain NTL4 (Luo Z-Q et al., 2001, Mol Plant Microbe Interact., 14(1):98-103) was used for inoculating embryos from pearl millet maintainer Tift23 DBE1 and sorghum Tx430 lines. Detailed transformation procedures used for pearl millet are the same as for sorghum (Howe et al., 2006, Plant Cell Rep 25:784-91).

Example 2

Phenotypic Effects of MSH1 Suppression

MSH1 expression suppressed transgenically by use of RNAi in five plant species: soybean (Glycine max (L.) Merr), tomato (Solanum lycopersicum L), tobacco (Nicotiana tabacum L.), millet (Pennisetum glaucum (L.) R. Br.) and sorghum (Sorghum bicolor (L.) Moench). In each case, similar changes were observed, including cytoplasmic male sterility, evidence of variegation and altered chloroplast development, reduced growth rate and dwarfing, altered flowering time or non-flowering, enhanced branching, reduced flavonoid biosynthesis and lack of anthocyanins, enhanced pathogen susceptibility, and altered leaf morphologies (see FIG. 1). Variegation, dwarfing, and mitochondrial DNA rearrangements are also observed in various plants subjected to MSH1 suppression as shown in FIGS. 2, 3, and 4, respectively. Physiologically, plants show reduced ATP and enhanced ROS levels, reduced mitochondrial motility, enhanced mitophagy, expression of stress response pathways, and altered cytokinin and GA metabolism (ROS data in FIG. 5).

The striking phenotypic similarities among plant species indicate that many of the msh1-associated changes are programmed responses. Transcript and metabolic analyses have identified several pathways associated with the emerging phenotypes (Table 1). Sorghum and Arabidopsis transcript profiling experiments show reduced expression of cell cycle genes, altered flowering gene expression (FLC), and enhanced GA catabolism (GA20-ox2 and GA20-ox6) in the reduced growth phenotypes. Plants are restored in growth rate and flower induction with the application of gibberellic acid.

TABLE 1

	Transcript Profiling		Metabolic Profiling			
AGI	Gene	msh1*	metabolite	Col-0	msh1	
	A. Redox/oxidati	ive stress	response			
AT3G22370 AT5G20230 AT2G21640	AOX1A ATBCB Oxid Stress Response	2.2 10.9 2.9	Glutathione† Ascorbate† phosphate	22,520 289,996 12.3M	33,322 460,261 32.1M	
AT4G20830 FAD-binding domain protein 2.6 B. Photosynthesis genes						
AT5G66570	PSBO-1	-1.3	Sucrose†	26,969.4	N.D.	
AT3G50820	PSBO-2	-1.4	Raffinose†	49,427.8	N.D.	
AT4G02770	PSAD-1	-1.6				
AT2G30790	PSBP-2	-2				
	C. GA	response				
AT1G30040	ATGA20X2 (GA catabolism)	1.7	GA53	11 ng/g DW	N.D.	
AT1G02400	ATGA20X6 (GA catabolism)	9.3	GAI9	7 ng/g DW	N.D.	
AT2G14900	GA-regulated protein	-3.3				

^{*}Fold change of levels in msh1 relative to Col-0,

Example 3

Genetic Analysis of Tx430 *Sorghum* Lines following Exposure to and Loss of the MSH1 RNAi Transgene by Segregation

A non-transgenic, highly dwarfed, delayed flowering and variegated TX430 sorghum plant was obtained from a 40 segregation population of progeny plants from a parental Tx430 sorghum plant that was heterozygous for a transgene that inhibits MSH1 expression by RNA interference (RNAi). Tx430 was the original genotype used to obtain the transgenic sorghum plant comprising the transgene that inhibits 45 MSH1 expression. Crossing of this non-transgenic, highly dwarfed, delayed flowering and variegated TX430 sorghum plant by isogenic TX430 wildtype as pollen parent, produced a wildtype F1 phenotype that showed no evidence of the original dwarfing, delay in flowering or variegation 50 phenotypes (FIG. 6). This was a surprising result, since we had assumed the RNAi-induced changes to be organellar, and anticipated maternal transmission of the phenotypes. Introduction of the wildtype genome neutralized the original RNAi-induced effects. The F2 population, derived by self- 55 pollination of these F1 plants, produced a broad distribution of phenotypic variation, referred to as quantitative variation (VQ), some of which is described in Table 2. SAS PROC MIXED was used for all analyses in Table 2. Each trait was analyzed with the fixed effect of line in the model and 60 heterogeneous variances among the lines were assumed and estimated, along with standard errors of the estimates. A chi-square test of the heterogeneous variance model against the homogeneous variance model was performed. A significant chi-square value indicates statistically significant dif- 65 ferences among line variances. While a small proportion (ca. 1/50 plants) shows the dwarfed, variegated phenotype, and

about 50% show cytoplasmic male sterility as a likely mitochondrial genetic lesion (Hanson and Bentolila, 2004), a large proportion of the population shows significant quantitative variation in aboveground fresh and dry weight biomass, panicle weight, and other useful agronomic features. Particularly intriguing in these data is the observed capacity within the population to out-perform either parent for several traits. The range of diversity cannot reasonably be accounted for by nuclear genetic variation, since the original cross is TX430×TX430 (made in the greenhouse with bagged panicles).

TABLE 2

	Assessment of phenotypic variation in Sorghum									
	Line	N^1	Lsmean	Variance	SE variance	Chi- Square ²	P-value			
Plant Height (cm)	F1	31	156.65	1195.5	308.68	156.98	<0.0001			
Plant Height (cm)	F2	274	143.63	1400.33	119.86					
Plant Height (cm)	Dwarf	55	48.29	61.17	11.77					
Plant Height (cm)	Wild- type	18	131.11	32.58	11.17					
Panicle Length (cm)	F1	13	27.154	11.81	4.82	4.75	0.0931			
Panicle Length (cm)	F2	275	27.171	17.20	1.47					
Panicle Length (cm)	Wild Type	11	26.636	5.85	2.61					

[†]values are normalized raw area count from mass spectrometer analysis,

N.D. non detectable

A limited dataset is shown. Shading indicates downregulation in msh1.

20

	Assessment of phenotypic variation in Sorghum							
	Line	N^1	Lsmean	Variance	SE variance	Chi- Square ²	P-value	
Panicle Weight	F1	16	46.63	252.65	92.25	14.49	0.0007	
(grams) Panicle Weight	F2	368	45.26	365.78	27.00			
(grams) Panicle Weight	Wild Type	17	33.53	67.51	23.87			
(grams) Dry Biomass	F1	3	294.7	12258 ³	12258	16.46	0.0009	
(grams) Dry Biomass	F2	52	224.8	3023.4	598.7			
(grams) Dry Biomass	Dwarf	11	195.8	2696.6	1205.9			
(grams) Dry Biomass (grams)	Wild Type	10	193.6	283.1	133.5			

 ^{1}N = number of observations in a line

Example 4

Analysis of *Arabidopsis* MSH1/MSH1 F3 Progeny of a msh1/msh1×MSH1/MSH1 Cross

In these experiments, the recessive msh1 mutation was removed by segregation. The recessive msh1/msh1 Columbia ecotype parent was first crossed to wild type Columbia ecotype plants as pollen donor (Col-0 msh1×Col-0wt) to obtain an F1 population of msh1/MSH1 plants. The F1 progeny were (selfed to obtain an F2 population segregating for the msh1locus. MSH1/MSH1 F2 progeny were selected 40 from the F2 population and selfed to obtain MSH1/MSH1 F3 progeny of the selected MSH1/MSH1 F2 parent.

To assess phenotypic variation in the selected F3 MSH1/ MSH1 Arabidopsis lines, measurements were averaged from four plants each of wildtype Col-0 and the selected F3 45 progeny line as shown in Table 3. Fresh biomass was total aboveground leaf tissue, base diameter was the diameter of root-stem transition zone, and stalk diameter was the diameter of the floral stalk. Each parameter showed a 20-24% increase in the selected F3 progeny line, even though the two 50 plant populations (i.e. Col-O and MSH1/MSH1 F3) progeny should be genetically identical. Plants from each group were selected to represent the same stage of development and same number of leaves (average of 48 leaves per plant in each group). The data of Table 3 and plants shown in FIG. 55 7 represent one selected F3 population. Other selected F3 populations (not shown) demonstrated uniformly lower average growth relative to wildtype.

One MSH1/MSH1 F3 progeny derived from the Col-0 msh1×Col-0wt cross showed markedly enhanced growth as 60 shown in FIG. 7 and Table 3. Such markedly enhanced growth resembles hybrid vigor in that the F3 progeny of the cross exhibit increased growth relative to the Col-O parental germplasm. However, these experiments can be distinguished from instances where hybrid vigor is obtained by 65 crossing parental lines of two distinct heterotic genetic backgrounds since the two parental lines used here both had

32

Columbia ecotype genetic backgrounds and differed only in the presence of the recessive msh1 mutation in one of the Columbia ecotype parents.

TABLE 3

	Assessment	ent of phenotypic variation in Arabidopsis.					
10		Col-0 (wild-type parent)	msh1 × Col-0 F ₃ (MSH1 positive progeny)				
10	Fresh biomass (g)	4.9	6.3				
	Base diameter (mm)	2.2	2.9				
	Stalk diameter (mm)	1.6	2.0				

Example 5

Variation in Plant Height, Panicle Weight, and Grain Yield in Individual *Sorghum* Plants in an F2 Population Obtained from an Outcross to MSH1—Suppressed *Sorghum*

F2 populations of *sorghum* plants derived from parental Tx430 *sorghum* plants that had been subjected to MSH1 suppression as describe in FIG. 6 and Example 3 were assayed for variation in plant height (FIG. 8), panicle weight (FIG. 9), and grain yield (FIG. 10) by comparing the values for individual plants in the population.

Significant variation was observed between individual 30 plants within the F2 population. More specifically, certain sorghum lines exhibited distinctive bi-phasic distributions of plants within the F2 populations with respect to these traits. For example, the F2 population of sorghum line GAII-11 exhibited one subpopulation of plants with plant height between about 105 and 125 cM and another sub-population of plants with a plant height between about 185 to 215 cM. These subpopulations were represented by "peaks" in the FIG. 8 plot. Similar distributions of subpopulations are also observed for sorghum lines GA11-15, GA11-28 and GA11-24 in the FIG. 8 plot. For the GA11-11, GA11-15, GA11-28 and GA11-24 F2 populations, one set of sub-populations either overlapped or had a value less than that of the wild-type TA430 control plant heights while another subpopulation had a value that was clearly greater than that of the wild-type PA430 control plants (FIG. 8). Subpopulations and/or individual plants in the GA11-11, GA11-15, GA11-28 and GA11-24 F2 populations also exhibited panicle weights and grain yields that either overlapped or had a value less than that of the wild-type TA430 control plant heights while other sub-populations or plants had a value that was clearly greater than that of the wild-type PA430 control plants (FIGS. 9 and 10).

It is concluded that differences in *sorghum* plant height, panicle weight, and grain yield are observed between: a) distinct subpopulations of plants within a given F2 population of *sorghum* plants of a given *sorghum* line; and/or: b) a distinct sub-populations of plants within a given F2 population of *sorghum* plants of a given *sorghum* line and the wild-type parental control line. It is further contemplated that those sub-populations of *sorghum* plants that exhibit desirable increases in plant height, panicle number, and/or grain yield may comprise certain differences in their chromosomal DNA methylation state, their chromosomal DNA sequence, post-translation modifications of a histone protein associated with a chromosomal locus, or any combination thereof that either contribute directly to such useful traits (i.e. have a direct causal relationship to the useful trait) or

²Chi-square test is test for differences among line variances

³The unusually high variance is the consequence of small sample size for this trait.

are associated by either genetic or epigenetic linkage(s) to loci that contribute directly to such desirable traits.

Example 6

Characterization of Small RNA Profiles and DNA Methylation State in Plants Exhibiting Useful Traits Associated with MSH1 Suppression

A comparison of small RNA profiles and DNA methylation states in reference plants that do not exhibit a useful phenotype and test plants comprising an altered chromosomal locus associated with a useful trait can be used to identify altered chromosomal loci. Methods for making such comparisons that can be generalized to a variety of plants are provided in this example.

In a particular exemplary embodiment, the small RNA profiles and DNA methylation states of various chromosomal loci in: a) distinct subpopulations of plants within a 20 given F2 population of sorghum plants of a given sorghum line; and/or: b) a distinct sub-populations of plants within a given F2 population of sorghum plants of a given sorghum line and the wild-type parental control line; are compared. The objective of these comparisons is to identify differences 25 in the small RNA profiles and/or methylation of certain chromosomal DNA loci between those sorghum plants that exhibit the useful traits and sorghum plants that do not exhibit the useful traits. Such differences can then be used to identify sRNAs or chromosomal loci that either contribute 30 directly to such useful traits or are associated by either genetic linkage(s) or through an epigenetic mechanism to loci that contribute directly to such useful traits. Sorghum plants that will be examined can include wild type plants, plants from distinct sub-populations and/or individual plants 35 in the GA11-11, GA11-15, GA11-28 and GA11-24 or other sorghum line F2 populations that exhibit plant heights, panicle weights, and/or grain yields that either overlap or have a value less than that of the wildtype TA430 control plant heights as well as plants from distinct sub-populations 40 and/or individual plants in the GA11-11, GA11-15, GA11-28 and GA11-24 or other sorghum line F2 populations that exhibit plant heights, panicle weights, and/or grain yields that are clearly greater than that of the wild-type TA430 control plants. Such plants and such sub-populations are 45 exemplarily described in the preceding Example 5 and in FIGS. 8, 9, and 10.

The small RNA (sRNA) profiles of wild type sorghum (Tx430), F1 sorghum, and selected F2 sorghum plants derived from different sub-populations are determined. Sor- 50 ghum sub-populations or plants that will be examined can include wild type plants, and subpopulations and/or individual plants in the GA11-11, GA11-15, GA11-28 and GA11-24 or other sorghum F2 populations as described above. For example, certain sorghum populations subjected 55 to MSH1 suppression can exhibit panicle weights and grain yields that either overlap or have a value less than that of the wild-type TA430 control plant heights while other sorghum sub-populations or plants can a value that was clearly greater than that of the wild-type TA430 control plants as shown in 60 FIGS. 9 and 10 can be subjected to deep sequencing to identify the types (qualitative analysis) and relative amounts (quantitative analysis) of sRNAs present in these various plant lines. Such qualitative and quantitative analyses can then be used to establish correlations between the presence 65 or absence of a given phenotype and the presence, absence, or relative abundance of a given sRNA.

34

Deep sequencing techniques to characterize sRNA populations can be determined as described by methods including but not limited to those described by Zhou et al. PLoS One. 2010; 5(12): e15224; or Glazov et al. PLoS One. 2009 Jul. 27; 4(7):e6349. In certain embodiments, three biological replicates can be sequenced for each sample and sRNA libraries can be prepared and sequenced according to an IlluminaTM protocol. Briefly, low-molecular weight sRNAs (17-27 nt in length) can be isolated from total RNA by size fractionation. Following ligation of 3' and 5' adaptors to sRNAs, RT-PCR will be performed to construct the sRNA library. The library will be purified and validated according to the IlluminaTM protocol and IlluminaTM-based deep sequencing of the library can be performed

Following removal of common sequences (rRNA, tRNA, snRNA, and snoRNA), the remaining sRNA sequences will be subjected to several analyses. The first analysis is to assess distribution of sRNAs in the genome, with the expectation of identifying altered sRNA distribution by disruption of MSH1 function. Analysis of genomic clustering will be used to examine the distribution of sRNA-generating loci in the genome. An sRNA cluster will be defined as a group of sRNAs, in which each small RNA is <100 nt from its nearest neighbor as described in Johnson et al. (2009). Based on this definition, sRNAs at the ends of a cluster are >100 nt away from the next nearest small RNA outside the cluster (Johnson et al., 2009). The differential expression of siRNA signatures among different plant lines can be compared to gain insight into their relationship with disrupted MSH1 function. This will be accomplished by comparing the relative abundance of miRNAs or siRNAs in each library derived from each plant line. The SAMseq method can be used to perform statistical analysis of significant levels of differential expression. Several sRNAs that exhibit differential expression patterns in deep-sequencing analysis can be selected for validation using RNA gel blot analysis.

To gain information on the relationship between alterations in DNA methylation and sRNAs levels in various samples, regions containing DNA methylation (described below) can be mapped against the sRNAs obtained from this study and other publicly available databases, to identify regions containing DNA methylation that are potentially targeted by sRNA.

The sRNA and DNA methylation profiles obtained from different lines can be compared to determine whether alterations in DNA methylation content correlate with changes in sRNA abundance in various plant samples that exhibit different MSH-1 induced phenotypes. One concern in such analyses is that sRNAs may be too short to be detected. sRNAs are typically generated from much longer transcripts in plants. Therefore, one can expand analyses of DNA methylation to 500 by on either side of the chromosomal locus containing sRNAs as reported (Wang et al., 2009). This analysis would indicate whether DNA methylation could potentially be induced by sRNAs. Such studies can be used to identify detectable alterations in the sRNA population that alter genome methylation patterning that can result from MSH1 suppression. Any of the sRNAs and/or genomic regions identified in such studies can then be suppressed and/or up-regulated using transgenic or other genomic alteration-based approaches to obtain desirable phenotypes that can result from MSH1 suppression.

Association of useful phenotypes induced by MSH1 suppression in various plants and plant lines with chromosomal alterations can also be determined by methyl C detection in whole genome bisulfite sequencing experiments. The genomic bisulfite deep sequencing method (Lister 2009) can

35 be used to obtain a whole-genome view of all possible

methylated cytosines in the genomes of plants subjected to MSH1 suppression including, but not limited to, those plants exhibiting desirable phenotypes or undesirable phenotypes, and suitable control plants including, but not limited to, 5 parental lines that have not been subjected to MSH1 suppression. In an exemplary method, about five micrograms of genomic DNA can be isolated and spiked with 25 nanograms of unmethylated lambda DNA that serves as an internal control for the efficiency of bisulfite conversion of 10 non-methylated cytosine nucleotides to uracils. The DNA can be sonicated to an average length of about 300 bp and a DNA library can be constructed. An exemplary method that follows an Illumina™ Paired End protocol comprising modifications where the end repair cocktail do not contain 15 dCTP and the adapters contain methylated cytosines (IlluminaTM) can be used. Bisulfite conversion of the adapterligated DNA can be followed by limited cycles of PCR with a uracil insensitive PfuTurboCx DNA polymerase (StratageneTM). Gel-isolated 200-300 by products will be 20 sequenced to a length of 110 bases on the IlluminaTM GA II system. The standard Illumina™ image analysis, base calling and processing pipeline will be used to obtain the initial processed sequences. In certain embodiments, only those sequences that pass internal IlluminaTM filters (Chastity 25 >0.6) will be stored together with the PHRED-like sequence quality scores in FastQ files. Sequence reads will be trimmed to before the first Project Description 12 occurrence of a low quality base (PHRED score <2). Any remaining cytosine bases in the sequences can be converted to thymine and the 30 genomic position of this retained in a methyl C coverage file. In certain embodiments, two reference genomes can be generated. In the first reference genome, corresponding to the "Watson" strand, the cytosines can be converted to thymines. In the second, corresponding to the Crick strand, 35 guanines can be converted to adenines. The same conversion can be done for the internal control Lambda DNA, which will be analyzed as separate reference genomes for the efficiency of conversion of non-methylated cytosines. The

Illumina sequences will be aligned to the two reference 40

genomes with Bowtie (Langmead et al., 2009). In certain

embodiments, only sequencing reads with unique starting

positions will be scored (a second sequence starting at the

same position will be discarded to minimize unequal PCR

thymines of greater than 99% is expected and will be confirmed in pilot studies and a single lane analysis of each

library (prior to further sequencing of the library), as deter-

coverage (each sequence read counts as coverage of 1).

Threshold values will be established to have a p-value of

< 0.01 for a cytosine occurring by sequencing error or 55

mined using the internal Lambda DNA control sequences. 50 The occurrence of cytosines in the bisulfite-treated Lambda DNA can be computed as a function of the sequence

amplification distortion of the data). For the Lambda internal 45 control, a conversion rate of nonmethylated cytosines to

incomplete conversion to uracil.

Two biological replicates can be used for each type of genome analyzed. The coverage can be 10× for each strand. This should be sufficient coverage to compare the individual biological replicates at most positions for individual variation. The combined sequence data from the two individuals will be combined for 20× coverage of each strand when comparing different genotype samples. The individual biological replicates can be used to establish coverage and methylation percentage thresholds to have a False Discovery 65 Rate (FDR) of <0.05 for differences at specific positions. Selected regions showing methyl C differences can be

36

analyzed by the traditional bisulfite-PCR-cloning method to validate the whole genome data and FDR predictions.

Example 7

Quantitative Analysis of Methylation and Phenotypic Variation in Response to MSH1 Suppression

It is possible to exploit the quantitative phenotypic variation that emerges in an F2 population derived by crossing a MSH1 RNAi-derived phenotypic variantxwild type. The heritability and quantitative variation in various sorghum populations subjected to MSH1 suppression and control sorghum plants described herein can be determined to identify chromosomal alterations conferring useful traits. In certain embodiments, these methods can entail use of use bisulfite-derived DNA SNP polymorphisms identified by sorghum shotgun sequencing experiments in SNP development and detection. The sorghum genome is about 1628 cM, and we will aim for a SNP marker density of about 1 SNP/10 cM (centimorgans). Therefore, 163 Me-C sites for QTL analysis will be selected on the basis of their differential methylation in the whole genome analysis of up to five samples types (i.e. (1) wild type, (2) transgenic MSH1 knockdown plants showing dramatically reduced growth rate and delayed flowering, (3) nontransgenic segregants that retain the altered growth phenotype, (4) F1 plants (as shown in Figure (6) and (5) selected F2 plants exhibiting quantitative variation (FIG. 6)), and for an even 10-cM spacing across the sorghum genome.

DNA from 200 F2 individuals can be bisulfite-treated to create a C/T SNP in the subsequent PCR product. The ratio of C/T will depend on the degree of Me-C at each methylation site. PCR primers designed to the C-depleted sequences will be used to amplify targeted Me-C SNP regions in the bisulfite-treated DNA. The C/T polymorphism will be detected on a LightCycler 480 PCR system using Hybprobes™ (Roche, Indianapolis, Ind., USA). HybprobesTM use fluorescence resonance energy transfer (FRET) between adjacent probes hybridized to the PCR product and differential melting to determine the C/T frequency at the Me-C SNP position. LightCyclerTM Probe Design Software (Roche) will be used to design the Hyb-Probes, with the C/T polymorphism in the middle of the sensor probe. The ratio of PCR primers to obtain optimal asymmetric PCR of the Me-C strand for hybridization to the $HybProbes^{TM}$ will be experimentally determined for each

Heritability analysis. Up to about two hundred or more F3 families can be developed in *sorghum*. DNA can be extracted from each F2 individual giving rise to each F3 family. A replicated field trial of the F3 families can be conducted to perform heritability analysis of the putative epigenetic variation generated by the trans-generational effects of the MSH1 RNAi transgene (i.e. MSH1 suppression). For each species, single three meter rows will be arranged in a randomized complete block design with two replications. Populations will be grown in experimental fields.

QTL analysis. Along with the marker data on the 200 F2 individuals, the phenotypic data will be used in a QTL analysis to locate genomic regions affected by MSH1 in previous generations that are generating the observed variation for total biomass and seed yield. A genetic map will be

constructed using segregation data on methylation site changes, followed by standard composite interval mapping.

Example 8

Use of Msh1 Suppression to Alter the Epigenome to Produce Dramatic and Heritable Changes in Plant Growth

Msh1 suppression was used to induce phenotypic and ¹⁰ epigenetic variation, and to select derived phenotypes in the crop species *Sorghum bicolor* (L.) Moench and the model plant *Arabidopsis thaliana* (L.) Heynh.

FIG. 11 shows the transgene and crossing process that was used in this study for both Arabidopsis and sorghum. In sorghum, all experiments were conducted with the inbred line Tx430 (F. R. Miller, Crop Sci. 24, 1224, 1984), whereas Arabidopsis experiments were carried out in the inbred 20 ecotype Columbia-0. MSH1-dr sorghum plants that no longer contain the MSH1-RNAi transgene are restored to normal MSH1 transcript levels; nevertheless, they maintain the altered growth phenotype through multiple generations 25 of self-pollination. When crossed reciprocally to the wildtype inbred Tx430 line, progeny are restored to a normal phenotype. The derived F1 progeny, designated MSH1epiF1, no longer show the dwarfed, tillering, late flowering phenotype. In fact, the plants grow taller and generally set more seed than the wildtype (FIG. 11A). Self-pollination of the MSH1-epiF1 plants produced an F2 population (MSH1epiF2) that was strikingly variable in plant phenotype but 35 showed no MSH1-dr phenotype (FIG. 11B-D). A proportion of greenhouse-grown MSH1-epiF3 families did show the MSH1-dr phenotype at a frequency of ca. 8% (Table 4), and no dwarf phenotype appeared in the epi-F4 lines.

TABLE 4

Frequency of MSH1-dr phenotype (8.4%) in epi-F3 families derived from *sorghum* Tx430 MSH1-dr × Tx430 and grown in the greenhouse. Derived epi-F4 families showed no evidence of the MSH1-dr phenotype (not shown).

F3 family	N	Mean plant height (cm)	Tall or wildtype	Dwarf	
1	10	160	10	0	Τ
2	9	208	9	0	
3	10	167	10	0	
4	10	189	10	0	
5	8	186	7	1	
6	10	114	10	0	
7	9	203	9	0	
8	7	102	6	1	
9	2	107	2	0	
10	9	116	9	0	
11	4	89	3	1	
12	6	118	6	0	
13	10	187	10	0	
14	8	150	6	2	
15	7	81	3	4	
16	10	143	7	3	
17	5	122	5	0	
18	10	137	9	1	

38

TABLE 4-continued

Frequency of MSH1-dr phenotype (8.4%) in epi-F3 families derived from sorghum Tx430 MSH1-dr x Tx430 and grown in the greenhouse. Derived epi-F4 families showed no evidence of the MSH1-dr phenotype (not shown).

)	F3 family	N	Mean plant height (cm)	Tall or wildtype	Dwarf	
-	19 19	10 154	98	10 141	0 13	

The F2 plants, and subsequent populations derived by self-pollinating, showed variation for agronomic performance traits, including panicle and plant architecture, tillering time and number, plant height and above-ground biomass, and yield components of panicle and seed weight (Table 5 for plant height and grain yield). Similarly dramatic changes in growth were observed in *Arabidopsis* populations derived from crossing the msh1 mutant with wildtype, followed by selection for the homozygous MSH1/MSH1 F2 plants and serial self-pollination (FIG. 11F-H).

Sorghum MSH1-epiF2, MSH1-epiF3, and MSH1-epiF4 populations grown under field conditions in 2010 and 2011 permitted larger-scale evaluations of plant growth changes (Tables 5, 6, 7). Phenotypic distributions were developed from results of two sorghum field experiments, demonstrating patterns in the MSH1-epiF2 approaching bimodality (FIG. 12). All traits showed quantitative patterns of variation. F3 and F4 progenies were tested under both field and greenhouse conditions, displaying heritability for plant height with increasing uniformity among plants each generation, and response to selection for grain yield, although this trait was subjected to less rigorous selection during growth in the greenhouse (FIG. 13). These results suggest a high degree of heritability and selection response for the variation observed.

Altered plant development in sorghum MSH1-dr and Arabidopsis msh1 mutant lines, including variation in growth rate, branching, maturation and flowering, was conditioned by chloroplast changes (see following Example 9). We were interested in assessing the relationship of MSH1-⁵⁰ epiF2 variation to these organellar influences. Arabidopsis MSH1 hemi-complementation lines, derived by introducing a mitochondrial-versus chloroplast-targeted MSH1 transgene to the msh1 mutant line (Y.-Z. Xu et al. Plant Cell 55 239:3428, 2011), distinguish mitochondrial and chloroplast contributions to the phenomenon. Both mitochondrial and chloroplast hemi-complementation lines were crossed as females to wildtype (Col-0) to produce F1 and F2 progeny. 60 F1 plants from crosses to the chloroplast-complemented line produced phenotypes similar to wildtype, although about 25% of the F1 plants showed altered leaf curling and delayed flowering (FIG. 16). This curling phenotype may be a consequence of MSH1 overexpression, since F1 plants contain both the wildtype MSH1 allele and the transgene. The phenotype resembles effects of altered salicylic acid

pathway regulation, an epigenetically regulated process (T. L. Stokes et al. Genes Dev 16, 171, 2002). F1 progeny from crosses to the mitochondrial complemented line displayed phenotypic variation in plant growth, with over 30% of the plants showing enhanced growth, larger rosette diameter, thicker floral stems and earlier flowering time, similar to MSH1-epiF3 phenotypes (FIGS. 14A & 17; Table 8). These results were further confirmed in the mitochondrial vs. chloroplast-complemented F2 populations (FIG. 14B-E), and suggest that the MSH1-epiF3 enhanced growth changes derive from restoring MSH1 function to plants that have undergone the MSH1-dr developmental reprogramming phenomenon.

Arabidopsis wildtype and MSH1-epiF3 plants, both Col-0 background, were investigated for evidence of methylome changes that might accompany heritable MSH1-derived phenotypes. Experiments used sodium bisulfite treated

40

chromosomes enriched for differentially methylated positions; the Becker et al. analysis of natural variation, shown for illustration purposes in FIG. 15C, showed fairly uniform distribution of differential methylation spanning each chromosome, whereas the MSH1-epiF3 lines revealed irregular patterns of differential methylation that concentrated in discrete regions of the genome (FIG. 15B). Several DMRs showing changes in methylation were confirmed by targeted PCR amplification and sequencing of bisulfite-treated DNA intervals (FIG. 18, Table 9). From these results we infer that the developmental variation that accompanies MSH1 disruption involves pronounced changes in the methylation architecture of the plant. The inheritance pattern of the MSH1-dr phenotype, showing independence from the transgene and involvement of numerous developmental pathways, also indicates that epigenetic changes occur in the MSH1-dr lines.

TABLE 5

The majority of sorghum F₂ epi-line families consistently show a statistically significant increase in variation (p-value <0.05) in plant height and grain yield compared to wild-type Tx430. Data were collected from plants grown under field conditions in 2010 and 2011

		Plant I	Height			Grain Yield	d Per Panic	le
Year Family	Mean (cm)	Std. Error (cm)	Variance (cm ²)	p-value †	Mean (g)	Std. Error (g)	Variance (g ²)	p-value †
2010 Tx430	132.10	2.42	58.54	_	24.19	0.93	27.11	_
2010 msh1-epi11 F2	165.77	8.40	2116.67	< 0.001	51.29	3.45	368.88	< 0.001
2010 msh1-epi15 F2	135.30	5.02	1182.95	< 0.001	33.69	2.47	293.54	< 0.001
2010 msh1-epi22 F2	155.96	8.13	1783.50	< 0.001	35.84	2.77	290.84	< 0.001
2010 msh1-epi24 F2	140.04	3.40	1031.38	< 0.05	34.35	1.04	185.51	< 0.001
2010 msh1-epi28 F2	140.87	3.61	1130.67	< 0.01	23.75	1.58	141.69	< 0.001
2011 Tx430	134.50	0.55	64.95		45.20	0.89	146.49	_
2011 msh1-epi11 F2	186.57	3.93	1912.00	< 0.001	53.96	1.55	272.73	< 0.05
2011 msh1-epi15 F2	177.04	2.41	1532.86	< 0.001	53.66	0.94	184.36	< 0.05
2011 msh1-epi22 F2	180.73	10.62	1691.50	< 0.001	56.62	2.59	114.08	NS
2011 msh1-epi24 F2	154.78	1.98	1196.96	< 0.001	47.92	1.12	266.97	< 0.001
2011 msh1-epi28 F2	156.91	3.57	1238.75	< 0.001	47.49	1.27	222.84	< 0.05

[†] p-values based on Levene's test for homogeneity of variance in comparison to wild-type Tx430

genomic DNA and genome-wide next-gen sequence analysis (Lister et al. Cell 133, 523, 2008). Methylation changes were extensive, with differentially methylated positions involving predominantly CpG sites, with over 91,000 differentially methylated positions in over 1700 regions (Table 50 11, FIG. 15A). The pattern of methylation changes were consistent with observed heritability of altered phenotypes, with the large proportion of changes in gene coding regions of the genome, resembling data from studies of natural 55 epigenetic variation (C. Becker et al. Nature 480, 245,2011; R. J. Schmitz et al. Science 334, 369, 2011). Comparison of the non-differential methylation patterns in wildtype and MSH1-epiF3 lines in this study against patterns reported by a recent Arabidopsis study of natural methylation variation (C. Becker et al. Nature 480, 245,2011), showed remarkable correspondence of pattern (FIG. 15B, MSH1-epiF5 line2), confirming consistency of the Col-0 genome methylation analysis between the two studies. Striking differences were evident between the two studies for the regions of the

TABLE 6

Three of five *sorghum* epi-F2 line families measured for dry biomass show a statistically significant increase in variation (p-value <0.05) compared to wildtype Tx430. Data were collected from plants grown under field conditions in 2011.

			Dry Biomass Yield					
	Family	Mean (g)	Std. Error (g)	Variance (g ²)	p-value†			
Ξ	Tx430	53.11	1.94	79.35	_			
	msh1-epi11 F2	85.49	2.77	99.53	NS			
	msh1-epi15 F2	75.08	3.24	252.04	< 0.05			
	msh1-epi22 F2	92.33	7.90	311.83	NS			
	msh1-epi24 F2	68.26	3.54	363.73	< 0.001			
_	msh1-epi28 F2	66.93	5.79	503.32	<0.001			

[†]p-values based on Levene's test for homogeneity of variance in comparison to wildtype Tx430.

NS = not significant

NS = not significant

41

TABLE 7

 $Sorghum \ F_4 \ generation \ data \ showing \ significant \ differences \ (p-value < 0.05) \ for \ many \ epi-F4 \ families in plant height (37 of 39 lines) and grain yield (11 of 39 lines) compared to wildtype Tx430. Data were collected from plants grown under field conditions in 2011.$

						Grain Yie	eld Per Pan	icle
		Plant H	eight		_ Mean	Std. Error	Std. Dev.	
Line	Mean (cm)	Std. Error (cm)	Std. Dev. (cm)	p-value *	(g)	(g)	(g)	p-value *
Tx430	134.45	0.56	8.08	_	45.44	0.88	11.95	_
10.3	135.29	1.42	6.515	NS	40.71	2.17	9.71	NS
12.1	186.24	8.77	47.23	< 0.001	44.33	2.73	11.60	NS
12.10	238.85	2.01	9.00	< 0.001	51.84	2.68	11.99	NS
12.3	220.00	2.55	11.11	< 0.001	54.86	3.15	13.72	NS
14.1	187.20	5.72	25.59	< 0.001	56.59	3.50	14.87	< 0.05
15.2	222.75	1.76	8.63	< 0.001	33.88	1.74	8.52	< 0.001
17.2	174.52	6.55	36.49	< 0.001	61.25	2.54	11.05	< 0.001
17.3	192.54	5.66	27.72	< 0.001	47.02	1.74	8.16	NS
2a-9	216.00	4.44	19.34	< 0.001	48.12	3.40	14.41	NS
2b-1	217.83	3.41	14.49	< 0.001	43.88	4.29	17.69	NS
2b-3	221.24	2.10	8.67	< 0.001	54.82	3.94	16.25	NS
2b-4	217.44	2.65	10.60	< 0.001	44.75	3.36	12.08	NS
2b-5	231.32	3.46	15.07	< 0.001	53.40	3.00	12.70	NS
2b-6	229.90	1.49	6.67	< 0.001	50.52	2.43	10.87	NS
2b-8	231.21	1.61	7.89	< 0.001	39.95	2.71	13.27	NS
2b-10	207.80	4.01	17.94	< 0.001	66.94	3.99	17.84	< 0.001
3a-1	226.79	2.74	11.93	< 0.001	44.39	3.09	12.73	NS
3a-2	141.10	1.78	7.97	< 0.05	46.61	2.61	11.96	NS
3a-6	233.14	1.63	7.48	< 0.001	44.35	2.24	10.27	NS
3a-7	190.29	9.58	43.89	< 0.001	40.30	3.91	15.15	NS
3b-1	219.44	2.51	10.68	< 0.001	41.47	3.69	13.82	NS
3b-2	216.65	2.49	11.12	< 0.001	52.14	1.96	8.77	< 0.05
3b-3	210.28	3.34	14.17	< 0.001	39.99	3.69	11.08	NS
3b-4	207.64	4.72927	22.18	< 0.001	51.17	2.27	10.39	NS
3b-7	223.41	2.353125	9.70	< 0.001	53.10	3.45	14.22	NS
3b-10	234.14	2.170879	8.12	< 0.001	43.04	3.22	9.10	NS
4a-1	213.07	3.164821	11.84	< 0.001	60.54	6.29	22.66	< 0.01
4a-2	217.67	7.862307	30.45	< 0.001	52.33	3.40	10.77	NS
4a-4	225.56	5.02882	21.34	< 0.001	52.11	3.58	14.78	NS
4a-7	233.28	2.471809	10.49	< 0.001	41.28	2.15	8.87	NS
4a-8	200.31	7.515885	38.32	< 0.001	48.04	2.60	11.05	NS
4a-6 4b-10	133.06	1.403771	5.62	NS	63.96	3.39	13.55	<0.001
5a-1	216.48	4.470243	17.88	<0.001	68.90	4.72	18.28	<0.001
5a-2	219.05	2.415699	11.07	< 0.001	43.20	1.64	7.49	NS
5a-3	220.58	2.359566	8.17	< 0.001	58.30	2.66	9.58	<0.001
5a-5	214.67	3.178769	13.49	< 0.001	52.16	2.60	11.02	NS
5a-6	216.94	3.335935	13.75	< 0.001	53.35	2.80	11.21	NS
5a-8	212.90	3.568814	19.55	< 0.001	52.74	1.41	7.74	< 0.001
5a-9	227.29	2.318808	10.63	< 0.001	59.80	3.36	15.38	< 0.01

^{*} p-values based on max-t test for multiple comparison of means (Dunnett contrasts) using heteroscedastic consistent covariance estimation (E. Herberich et al. PLoS One. 5(3): e9788 (2010)), against wildtype Tx430.

NS = not significant

TABLE 8

Analysis of phenotype data from individual *Arabidopsis* F₂ families derived by crossing hemi-complementation lines × Col-0 wildtype. SSU-MSH1 refers to lines transformed with the plastid-targeted form of MSH1; AOX-MSH1 refers, to lines containing the mitochondrial-targeted form of the MSH1 transgene. In all genetic experiments using hemi-complementation, presence of the transgene was confirmed with a PCR-based assay.

		Rosette diameter			Fresh biomass				
Population	Mean (cm)	N	Std Error	Std Dev p-value	Mean (g)	N	Std Error	Std Dev	p-value
AOX-MSH1	11.07	36	0.37	2.23 < 0.001	8.86	10	0.47	1.33	NS
SSU-MSH1	11.76	18	0.26	1.10 < 0.001	10	10	0.55	1.55	NS
Col-0	12.98	42	0.24	1.59 —	9.45	10	0.43	1.36	_
F-2	12.83	21	0.34	1.57 NS	15.07	10	0.66	2.07	< 0.001
$(AOX-MSH1 \times Col-0)F-22$	13.82	21	0.42	1.92 < 0.10	14.62	10	0.92	2.24	< 0.001
$(AOX-MSH1 \times Col-0)F-28$	14.85	21	0.31	1.42 < 0.001	13.27	10	0.70	1.99	< 0.001
$(AOX-MSH1 \times Col-0)F-26$	12.82	20	0.25	1.12 NS	10.57	10	0.66	1.74	NS
$(SSU-MSH1 \times Col-0)F-29$	11.9	21	0.27	1.25 < 0.001	10.5	10	0.45	1.19	NS

P values are based on two-tailed Student t-test comparing to Col-0

NS = Not Significant

TABLE 9

44 TABLE 10-continued

AGI	Gene	Region size (bp)	No. DMP in region	Site	% meth- ylation in Col-0	% meth- ylation in F3
AT5G67120	RING/U-box superfamily protein	200	8	1	20%	86%
	protein			2	30%	86%
				3	20%	100%
				4	30%	100%
				5	30%	100%
				6	30%	100%
				7	30%	86%
				8	20%	100%
XT1G20690	SWI-SNF related protein	100	6	1	27%	75%
	protein			2	27%	83%
				3	18%	100%
				4	18%	92%
				5	18%	83%
				6	63%	92%
AT3G27150	Target of MIR2111-5p					
	region 1	200	9	1	0	58%
				2	0	67%
				3	0	92%
				4	0	100%
				5	0	83%
				6	0	92%
				7 8	0	67% 92%
				9	0	92% 75%
	region 2	250	17	1	0	100%
XT5G67120	RING/U-box superfamily protein	200	8	1	20%	86%
				2	0	100%
				3	58%	100%
				4	0	100%
				5	0	100%
				6	0	100%
				7	0	100%
				8	0	73%
				9	8% 8%	100%
				10 11	8% 0	82% 82%
				11	8%	82% 100%
				13	070	91%
				14	0	82%
				15	0	82%
				-	-	
				16	0	73%

TABLE 10

Primers used in the study						
Primer name	Sequence (SEQ ID NO:)					
For	bisulfite sequencing:					
AT5G67120RING-F	5'-TTTTTAGGAATTATTGAGTATTA TTGA-3' (SEQ ID NO: 17)					
AT5G67120RING-R	5'-AAATAAAAATCATACCCACATCC C-3' (SEQ ID NO: 18)					

Primer nam	ne	Sequence (SEQ ID NO:)
AT1G206909	WT-F	5'-TGTTGAATTATTAAGATATTTAA
		GAT-3'
		(SEQ ID NO: 19)
AT1G20690S	SWI-R	5'-TCAACCAATAAAAATTACCATCT
		AC-3'
		(SEQ ID NO: 20)
AT3g271501	stMir2-F	5'-TAAGTTTTTTTTAAGAGTTTGTA
		TTTGTAT-3'
		(SEQ ID NO: 21)
AT3g271501	stMir2-R	5'-TAAAAATAATCAAAACCTAACTT
		AC-3'
		(SEQ ID NO: 22)
AT3g271502	ndMir2-F	5'-ATTGTTTATTAAATGTTTTTTAG
		TT-3'
		(SEQ ID NO: 23)
AT3g271502	ndMir2-R	5'-CTAACAATTCCCAAAACCCTTAT
		C-3'
		(SEQ ID NO: 24)
Fo:	r PCR assay	of MSHI-RNAi transgene:
RNAi-F		5'-GTGTACTCATCTGGATCTGTATT
		G-3'
		(SEQ ID NO: 25)
RNAi-R		5'-GGTTGAGGAGCCTGAATCTCTGA
		AC-3'
		(SEQ ID NO: 26)

TABLE 11

_	Genome-wide 5-	nalysis in <i>Arabido</i> 3 plants.	opsis Col-0 and	
o _	Background	СрG	CHG	СНН
	Mapped	4,382,312	4,749,451	19,727,351
	Methylated	950,806	589,084	1,062,553
	DMPs	91,150	10,324	1,789
	DMRs	1,770	93	15

Plant phenotypes derived from crossing the MSH1-dr selections to wildtype did not appear to resemble those reported from other types of induced methylation changes, even though methylome changes were evident in the resulting populations. EpiRIL populations produced from crosses involving the Arabidopsis met1 mutant give rise to a variety of variant phenotypes (J. Reinders et al., Genes Dev. 23, 939 (2009). These earlier studies do not, however, report the enhanced vigor, markedly larger plant and stem size, or greater seed production that is seen with MSH1 manipulation.

The materials and methods used in this Example are as described below.

Plant Materials and Growth Conditions

Arabidopsis Col-0 and msh1 mutant lines were obtained from the Arabidopsis stock center and grown in metro mix with 12 hr daylight at 22° C. MSH1-epi lines were derived by crossing MSH1-dr lines with wild type plants. Arabi-65 dopsis plant biomass and rosette diameter were measured for 4-week-old plants. Arabidopsis flowering time was measured as date of first visible flower bud appearance. For

hemi-complementation crosses, mitochondrial (AOX-MSH1) and plastid (SSU-MSH1) complemented homozygous lines were crossed to Columbia-0 wildtype plants. Each F1 plant was genotyped for transgene and the wildtype MSH1 allele and harvested separately. Three F2 families from AOX-MSH1×Col-0 and two F2 families from SSU-MSH1×Col-0 were evaluated for growth parameters. All families were grown under the same conditions, and biomass, rosette diameter and flowering time were measured. Two-tailed Student t-test was used to calculate p-values.

The sorghum germplasm used in these experiments was derived from Tx430, an inbred sorghum line (Miller, 1984). Several T3 sorghum siblings were derived from a single MSH1-dr plant, grown under greenhouse conditions and designated GAII1-GAII30. Each of the lines were confirmed 15 to be transgene nulls. Six of them, GAII11, GAII15, GAII22, GAII24, GAII25, and GAII28 were used as females in crosses to wild type inbred Tx430 to derive F1 seed. Three additional plants, GAII22, GAII23, and GAII27 were used as males in reciprocal crosses. Day temperature in the 20 greenhouse was 79 to 83° F., and night was 69 to 73° F. Plants were grown under short (10-hr) daylength.

F1 progenies were grown under the same greenhouse conditions, with progenies ranging in size from 5-19 individuals. Derived T4 progenies were grown from the six 25 maternal msh1-dr plants used to derive F1s (GAII11, GAII15, GAII22, GAII24, GAII25, and GAII28), with populations ranging in size from 15-19 individuals. Selfpollinated seed of every F1 plant was harvested individually to derive the corresponding F2 families.

Field Experiments

During the summers of 2010 and 2011, F2 families were grown in two field experiments established under rainfed conditions at the Havelock Experiment Station of University of Nebraska in Lincoln. Experiments were arranged in an 35 incomplete block design, with the 2010 experiment consisting of one replication with 15 blocks and 30 entries per block (30×15 alpha lattice). Individual lines were planted in a single panicle-per-row plan, with a single row plot of 5-m length and 0.75-m between-row spacing. The F3 seed was 40 harvested from individual plants.

The 2011 experiment comprised seven blocks of 28 entries each (28×7 alpha lattice), with two replications fertilized with supplemental nitrogen at a dosage of 100 kg/ha. Forty eight samples from the 2010 experiment were 45 selected to comprise the F3. These samples were derived from all six original crosses and included high and low F2 grain yield values. In addition, a greenhouse-grown subgroup of 17 F3 samples were selected, based on dry panicle weight, to derive F4 seed. Thus, the 2011 field experiment 50 comprised 48, 77, and 42 entries corresponding to the F2, F3 and F4 generations, respectively, with wildtype Tx430 as

Sorghum Phenotypic Assessment

In 2010 and 2011 field experiments, the sorghum pheno- 55 tially methylated cytosines (DMCs). typic traits recorded included plant height (PH), in cm from ground to panicle tip, panicle length (PL), in cm from panicle base to tip, fresh and dry panicle weight (FPW and DPW) (g), fresh and dry biomass yield (FBY and DBY) (g), and net grain yield (NGY) (g). Sample size for PH, PL, 60 FPW, DPW and NGY varied from five to ten random, inner-row plants per row. Healthy, well-shaped heads were bagged before anthesis for selfing, and harvested after physiological maturity, when FPW was measured. The samples were dried at 80° F. for 30 days prior to measuring DPW and NGY. Biomass samples consisted of a three-plant sample, bagged and weighed after cutting to obtain FBW.

46

Plants were random, inner-row selections, and samples were completely dried at 160° F. over 15 days for DBW.

PCR Assay for RNAi Transgene.

PCR assay for MSH1-RNAi transgene presence in sorghum materials used primers listed in Table S7. The reaction conditions were: 95° C. 5 min, 30 cycles of 95° C. 30 s, 55° C. 1 min, 72° C. 2 min; final extension was at 72° C. 10 min. Positive and negative controls were included from a confirmed transgenic line and wildtype Tx430, respectively.

Bisulfite Treated Genomic Library Construction and Sequencing

Arabidopsis genomic DNA (ca 15 ug) prepared from Col-0 and epi-F3 plants was sonicated to a peak range of 200 bp to 600 bp, phenol/chloroform purified and ethanol precipitated. Sonicated DNA (ca 12 ug) was treated with Mung Bean Nuclease (New England Biolabs), phenol/chloroform extracted and ethanol precipitated. Mung Bean Nucleasetreated genomic DNA (ca 3 ug) was end-repaired and 3' end-adenylated with Illumina Genomic DNA Samples Prep Kit (Illumina, San Diego Calif.). The adenvlated DNA fragment was then ligated to methylation adapters (Illumina, San Diego, Calif.). Samples were then column purified and fractionated in agarose. A fraction of 280 bp to 400 bp was gel purified with the QIAquick Gel Purification kit (Qiagen, Valencia, Calif.). Another 3 ug of Mung Bean Nuclease treated genomic DNA was used to repeat the process, and the two fractions were pooled and subjected to sodium bisulfite treatment with the MethylEasy Xceed kit (Human Genetic Signatures Pty Ltd, North Ryde, Australia) according to manufacturer's instructions. Three independent library PCR enrichments were carried out with 10 ul from a total of 30 ul bisulfate treated DNA as input template. The PCR reaction mixture was 10 ul DNA, 5 ul of 10× pfuTurbo Cx buffer, 0.7 ul of PE1.0 primer, 0.7 ul PE2.0 primer, 0.5 ul of dNTP (25 mM), 1 ul of PfuTurbo Cx Hotstart DNA Polymerase (Stratagene, Santa Clara, Calif.), and water to a total volume of 50 ul. The PCR parameters were 950 C for 2 min, followed by 12 cycles of 950 C 30 sec, 650 C 30 sec and 720 C 1 min, then 720 C for 5 min. PCR product was column-purified and an equal volume from each PCR reaction was pooled together to a final concentration of 10 nM.

Libraries were DNA sequenced on the Illumina Genome Analyzer II with three 36-cycle TrueSeq sequencing kits v5 to read 116 nucleotides of sequence from a single end of each insert (V8 protocol).

Bisulfite Treatment of DNA for PCR Analysis

Arabidopsis genomic DNA was bisulfite treated using the MethylEasy Xceed kit according to manufacturer's instructions. PCR was performed using primers listed in Table S7, and the PCR products were cloned (Topo TA cloning kit, Invitrogen) and DNA-sequenced. Sequence alignment was performed using the T-Coffee multiple sequence alignment server (C Notredame, et al., J Mol Biol. 302:205-217, 2000).

DNA Sequence analysis and identification of differen-

Fastq files were aligned to the TAIR10 reference genome using Bismark (F Krueger, S R Andrews. Bioinformatics 27:1571-1572 (2011), which was also used to determine the methylation state of cytosines. One mismatch was allowed in the first 50 nucleotides of the read. Bismark only retains reads that can be uniquely mapped to a location in the genome.

Only cytosine positions identified as methylated in at least two reads for at least one of the genotypes and sequenced at least four times in each of the genotypes were used for the identification of DMCs. For these cytosine positions, the number of reads indicating methylation or non-methylation

for each genotype was tabulated using R (http://www.r-project.org). Fisher's exact test was carried out for testing differential methylation at each position. Adjustment for multiple testing over the entire genome was done as suggested in Storey and Tibshirani (J D Storey, R Tibshirani. Proc. Natl. Acad. Sci. USA 100:9440-9445 (2003) and a false discovery rate (FDR) of 0.05 was used for identifying differentially methylated cytosines. Methylome sequence data have been uploaded to the Gene Expression Omnibus with accession number GSE36783.

Mapping DMCs to genomic context and identifying differentially methylated regions (DMRs).

TAIR10 annotation (available on the internet ftp site "ftp.arabidopsis.org/home/tair/Genes/

TAIR10_genome_release/TAIR10_gff3") was used to determine the counts for DMCs or nondifferentially methylated cytosines in gene coding regions, 5'-UTRs, 3'-UTRs, introns, pseudogenes, non-coding RNAs, transposable ele-

48

ment genes, and intergenic regions. Intergenic regions were defined as regions not corresponding to any annotated feature.

For each methylation context (CpG, CHG, CHH), the genome was scanned for regions enriched in DMCs using a 1-kb window in 100-bp increments. Windows with at least four DMCs were retained and overlapping windows were merged into regions. Regions with at least 10 DMCs were retained with the boundary trimmed to the furthest DMCs in the region. Fisher's exact test was then performed for each region by merging all methylated/non-methylated read counts at all cytosine positions in the region. Adjusting for all tested regions, the FDR is controlled at 0.1.

Example 10

Summary Table of Nucleic Acid Sequences and SEQ ID NO

TABLE 12

Internet Accession Information	SEQ ID NO	Comments
The Arabidopsis Information Resource	1	Arabidopsis
(TAIR)		MSH1
1009043787		Full length cDNA (DNA
on the internet (world wide web) at arabidopsis.org		sequence)
The Arabidopsis Information Resource	2	Arabidopsis
TAIR)	-	MSH1 Protein (amino acid
1009118392		sequence)
on the internet (world wide web) at		1
arabidopsis.org		
NCBI AY856369	3	Soybean MSH1
on the world wide web at		>gi 61696668 gb AY856369.1
ncbi.nlm.nih.gov/nuccore		Glycine max DNA mismatch
		repair protein (MSH1) complete
VODI 4	,	cds; (DNA sequence)
NCBI Accession AY856370	4	Zea mays MSH1
on the world wide web at		gi 61696670 gb AY856370.1 Zea mays DNA mismatch repair
ncbi.nlm.nih.gov/nuccore		protein (MSH1), complete cds;
icol.iiiii.iiii.go v/ilaccore		(DNA sequence)
NCBI Accession	5	Tomato MSH1
AY866434.1		>gi 61696672 gb AY866434.1
on the world wide web at		Lycopersicon esculentum DNA
ncbi.nlm.nih.gov/nuccore		mismatch repair protein (MSH1)
		partial cds; (DNA sequence)
NCBI	6	Sorghum MSH1
XM002448093.1		>gi 242076403:1-3180 Sorghum
on the world wide web at		bicolor hypothetical protein;
ncbi.nlm.nih.gov/nuccore Os04g42784.1	7	(DNA sequence) Rice (Oryza sativa) MSH1
Rice Genome Annotation Project - MSU	,	coding sequence (DNA
Rice Genome Annotation (Osa1) Release		sequence)
5.1		554,0000)
Internet address		
ice.plantbiology.msu.edu/index.shtml		
Brachypodium	8	Brachypodium
Bradi5g15120.1		MSH1 coding region (DNA
On the world wide web at		sequence)
gramene.org/Brachypodium_distachyon/Gene		
Summary?db=core;g=BRADI5G15120;r		
=5:18500245- 18518223;t=BRADI5G15120.1		
GSVIVT01027931001	9	Vitis Vinifera
On the world wide web at	,	MSH1 cDNA (DNA sequence)
genoscope.cns.fr/spip/Vitis-vinifera-e.html		manufacture (Brazi sequence)
Cucsa.255860.1	10	Cucumber (Cucumis sativa)
On the internet (world wide web) at		MSH1 coding sequence; (DNA
phytozome.net/		sequence)
		* /
ГОМ-CD1F	11	Primer (DNA sequence)

TABLE 12-continued

TABLE 12-c	ontir	nued
Nucleotide Sequences provided	d in th	e Sequence Listing
Internet Accession Information	SEQ ID NO	Comments
At4g02840 The Arabidopsis Information Resource (TAIR) on the internet (world wide web) at	13	second intron of the Arabidopsis small nuclear riboprotein (At4g02840); (DNA sequence)
arabidopsis.org GenBank Accession ES831813.1 on the world wide web at ncbi.nlm.nih.gov/nucest	14	Cotton (Gossypium hirsutum) MSH1 partial cDNA sequence (EST); (DNA sequence)
Primer zm-msf8	15	Primer (DNA sequence)
Primer zm-msr8	16	primer(DNA sequence)
AT5G67120RING-F AT5G67120RING-R AT1G20690SWI-F AT1G20690SWI-R AT3g271501stMir2-F AT3g271501stMir2-R AT3g271502ndMir2-F AT3g271502ndMir2-F AT3g271502ndMir2-R RNAi-F RNAi-F AT3G27150 The Arabidopsis Information Resource (TAIR)	17 18 19 20 21 22 23 24 25 26 27	primer(DNA sequence)
on the internet (world wide web) at arabidopsis.org Col0-MIR2-2	28	DNA sequence (bisulfite
Col0-MIR2-3	29	sequencing) DNA sequence (bisulfite
Col0-MIR2-4	30	sequencing) DNA sequence (bisulfite
Col0-MIR2-5	31	sequencing) DNA sequence (bisulfite
Col0-MIR2-6	32	sequencing) DNA sequence (bisulfite
Col0-MIR2-10	33	sequencing) DNA sequence (bisulfite
Col0-MIR2-11	34	sequencing) DNA sequence (bisulfite
Col0-MIR2-12	35	sequencing) DNA sequence (bisulfite sequencing)
Col0-MIR2-26	36	DNA sequence (bisulfite sequencing)
Col0-MIR2-27	37	DNA sequence (bisulfite sequencing)
Col0-MIR2-28	38	DNA sequence (bisulfite sequencing)
Col0-MIR2-29	39	DNA sequence (bisulfite sequencing)
F3-Mir2-1	40	DNA sequence (bisulfite sequencing)
F3-Mir2-2	41	DNA sequence (bisulfite sequencing)
F3-Mir2-4	42	DNA sequence (bisulfite sequencing)
F3-Mir2-5	43	DNA sequence (bisulfite sequencing)
F3-Mir2-7	44	DNA sequence (bisulfite sequencing)
F3-Mir2-11	45	DNA sequence (bisulfite sequencing)
F3-Mir2-12	46	DNA sequence (bisulfite sequencing)
F3-Mir2-15	47	DNA sequence (bisulfite sequencing)
F3-Mir2-16	48	DNA sequence (bisulfite sequencing)
F3-Mir2-27	49	DNA sequence (bisulfite sequencing)
F3-Mir2-28	50	DNA sequence (bisulfite sequencing)

Nucleotide Sequences provid	ed in th	e Sequence Listing
Internet Accession Information	SEQ ID NO	Comments
Brassica Locus Bra015033 (Msh1 ortholog) Available on the internet (world wide web) at chibba.agtec.uga.edu/duplication/index/details ?lc=Bra015033	51	DNA sequence of the <i>Brassica</i> rapa Msh1 ortholog
Wheat Locus Q8RVT1 GenBank Accession No.: AF354709.1 Partial coding sequence Available on the internet (world wide web) at ncbi.nlm.nih.gov/nuccore/AF354709	52	WHEAT MutS homolog 7 (Fragment)

REFERENCES

Abdelnoor, R. V., Christensen, A. C., Mohammed, S., ²⁰ Munoz-Castillo, B., Moriyama, H. and Mackenzie, S. A. 2006. Mitochondrial genome dynamics in plants and animals: Convergent gene fusions of a MutS homolog. J. Molec. Evol. 63(2):165-73.

Abdelnoor, R. V., Yule, R., Elo, A., Christensen, A., ²⁵ Meyer-Gauen, G. and Mackenzie, S. 2003. Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc. Natl Acad. Sci. USA 100:5968-5973.

Arrieta-Montiel M P, Shedge V, Davila J, Christensen A C, Mackenzie S A. 2009. Diversity of the *Arabidopsis* mitochondrial genome occurs via nuclear-controlled recombination activity. Genetics 183:1261-8et al

Bellaoui M, Martin-Canadell A, Pelletier G, Budar F. 35 350:133-141. 1998. Low-copy-number molecules are produced by recombination, actively maintained and can be amplified in the mitochondrialgenome of Brassicaceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol Gen Genet. 257:177-85 40 10:1163-1180

Buchanan BB, Balmer Y (2005). Redox Regulation: A Broadening Horizon. Annu Rev Plant Biol 56: 187-220.

Cokus, S J, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild C D, Pradhan S, Nelson S F, Pellegrini M and Jacobsen S E (2008) Shotgun bisulphate sequencing of the 45 *Arabidopsis* genome reveals DNA methylation patterning. Nature 452:215-219.

Davila, J., Arrieta-Montiel, M., Wamboldt, Y., Xu, Y.-Z., Mackenzie, S A. 2011. Double-strandbreak repair processes drive evolution of the mitochondrial genome in *Arabidopsis*. 50 Theor Appl Genet. 2012 Mar. 18. [Epub ahead of print].

De Gara L, Locato V, Dipierro S, de Pinto M C (2010) Redox homeostasis in plants. The challenge of living with endogenous oxygen production. Respir Physiol Neurobiol. 173 Suppl:S13-9.

Fu J, Keurentjes J J B, Bouwmeester H, American T, Verstappen F W A, Ward J L, Beale M H, de Vos R C H, Dijkstra M, Scheltema R A, Johannes F, Koornneef M, Vreugdenhil D, Breitling R, Jansen R C (2009) System-wide molecular evidence for phenotypic buffering in *Arabidopsis*. 60 Nature Genet 41:166-167.

Hanson, M. and Bentolila, S. 2004. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16 (suppl.): S154-S169.

Hawes S M, Sapienza C, Latham K E (2002) Ooplasmic 65 donation in humans: the potential for epigenic modifications. Hum Reprod 17:850-2.

52

Hauben M, Haesendonckx B, Standaert E, Van Der Kelen K, Azmi A, Akpo H, Ven Breusegem F, Guisez Y, Bots M, Lambert B, Laga B, De Block M (2009) Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc Natl Acad Sci USA 106:20109-20114.

Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P. (2008) Genevestigator v3: a reference expression database for the metaanalysis of transcriptomes. Adv Bioinformatics. 2008: 420747.

Ifuku K, Ishihara S, Sato F (2010). Molecular functions of oxygen-evolving complex family proteins in photosynthetic electron flow. J Integr. Plant Biol 52:723-734.

Jablonka E, Oborny B, Molnar I, Kisdi E, Holbauer J, et al. (1995) The adaptive advantage of phenotypic memory in changing environments. Philos Trans R Soc Lond B Biol Sci 350:133-141.

Janska, H., Sarria, R., Woloszynska, M., Arrieta-Montiel, M. and Mackenzie, S. 1998. Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163-1180.

Johannes F, Porcher E, Teixeira F K, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillmann C, Guerche P, Hospital F, Colot V (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:1-11.

Johnson, C., Kasprzewska, A., Tennessen, K., Fernandes, J., Nan, G. L., Walbot, V.,

Sundaresan, V., Vance, V., and Bowman, L. H. (2009). Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19, 1429-1440.

Langmead B, Trapnell C, Pop M, Salzberg S L (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25.

Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo Q-M, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Echer J R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315-322.

Llorente B, Smith C E, Symington L S 2008. Break-induced replication: What is it and what is it for? Cell Cycle 7:859-864.

Mackenzie, S A. 2011. Male sterility and hybrid seed production. In A. Altman and P. M. Hasegawa (eds). Plant Biotechnology and Agriculture: Prospects for the 21st Century, Elsevier Publ, in press.

McCauley D E and Olson M S 2008 Do recent findings in plant mitochondrial molecular and population genetics have implications for the study of gynodioecy and cytonuclear conflict? Evolution 62:1013-1025.

Pfannschmidt, T. (2010) Plastidial retrograde signaling—a true "plastid factor" or just metabolite signatures? Trends Plant Sci 15:427-435.

Redei, G. P. 1973. Extra-chromosomal mutability determined by a nuclear gene locus in *Arabidopsis*. Mutat. Res. 18, 149-162.

Reik, W., Walter J (2000) Genomic imprinting: parental influence on the genome. Nature Rev Genet 2: 21-32.

Sandhu, A. S., Abdelnoor, R. V. and Mackenzie, S. A. 2007. Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc Natl $_{\rm 15}$ Acad Sci USA. 104:1766-70.

Shedge, V., Arrieta-Montiel, M., Christensen, A. C. and Mackenzie, S. A. 2007. Plant mitochondrial recombination surveillance requires novel RecA and MutS homologs. Plant Cell 19:1251-1264.

Shedge V, Davila J, Arrieta-Montiel M P, Mohammed S, Mackenzie S A. 2010. Extensive rearrangement of the *Arabidopsis* mitochondrial genome elicits cellular conditions for thermotolerance. Plant Physiol. 152:1960-70.

Smiraglia D J, Kulawiec M, Bistulfi G L, Gupta S G, $_{25}$ Singh K K (2008) A novel role for mitochondria in regulating epigenetic modification in the nucleus. Cancer Biol Ther. 7: 1182-1190.

Vaughn, M W, Tanurd IcM, Lippman Z, Jiang H, Carrasquillo R, et al. (2007) Epigenetic natural variation in *Arabidopsis thaliana*. PLoS Biol 5:e174.

54

Xu Y-Z, Arrieta-Montiel M P, Wamboldt Y J, Virdi K, De Paula W B M, Widhalm J R, Basset G J, Davila J I, Elthon T E, Elowsky C G, Sato S J, Clemente T E and Mackenzie S A, (2011). MSH1 is a multi-functional protein in plants that alters mitochondrial and plastid properties and response to high light. Manuscript submitted.

Wang, X., Elling, A. A., Li, X., Li, N., Peng, Z., He, G., Sun, H., Qi, Y., Liu, X. S., and Deng, X. W. (2009). Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21, 1053-1069.

Waters M T, Wang P, Korkaric M, Capper R G, Saunders N J, Langdale J A. (2009) Plant Cell. 21:1109-28.

Zhang, X, Shiu S, Cal A, Borevitz J O (2008) Global analysis of genetic, epigenetic and transcriptional polymorphisms in *Arabidopsis thaliana* using whole genome tiling arrays. PLoS Genet 4:e1000032.

Having illustrated and described the principles of the present invention, it should be apparent to persons skilled in the art that the invention can be modified in arrangement and detail without departing from such principles.

Although the materials and methods of this invention have been described in terms of various embodiments and illustrative examples, it will be apparent to those of skill in the art that variations can be applied to the materials and methods described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 52 <210> SEQ ID NO 1 <211> LENGTH: 3730 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 1 agaggactgt gagattgtga attgcatagt cgtcgtcttc tggcgggaaa agaagcccta gaaaaagggt gaaaggtgaa aactctactt cttcttcttc ttcttcttca gagtgtgaga 120 gagatgeatt ggattgetae cagaaacgee gtegttteat teecaaaatg geggttette 180 ttccqctcct catatcqcac ttactcttcc ctcaaaccct cctccccaat tctacttaat 240 agaaggtact ctgaggggat atcttgtctc agagatggaa agtctttgaa aagaatcaca 300 acggetteta agaaagtgaa gacgteaagt gatgttetea etgacaaaga teteteteat 360 ttggtttggt ggaaggagag attgcagaca tgtaagaaac catctactct tcagcttatt 420 gaaaggctta tgtacaccaa tttacttggt ttggacccta gcttgaggaa tggaagttta 480 aaagatggaa acctcaactg ggagatgttg cagtttaagt caaggtttcc acgcgaagtt 540 ttgctctgca gagtaggaga attttatgag gctattggaa tagatgcttg tatacttgtt 600 gaatatgctg gtctcaatcc ttttggtggt cttcgatcag atagtattcc aaaggctggc 660 tgcccaatta tgaatcttcg acagactttg gatgacctga cacgcaatgg ttattcagtg 720 tgtattgtgg aggaagttca ggggccaaca ccagcacgct cccgtaaagg tcgatttatt 780 tcagggcatg cacatccagg aagtccttat gtatatgggc ttgtcggtgt tgaccatgat 840 cttgactttc ctgatcctat gcctgttgtt gggatatctc gttcagcaag ggggtattgt

atgatatcta	ttttcgagac	tatgaaagca	tattcgctag	atgatggtct	aacagaagaa	960
gccttagtta	ccaageteeg	cactcgtcgc	tgtcatcatc	ttttcttaca	tgcatcgttg	1020
aggcacaatg	catcagggac	gtgccgctgg	ggagagtttg	gggaaggggg	tctactctgg	1080
ggagaatgca	gtagcaggaa	ttttgaatgg	tttgaaggag	atactctttc	cgagctctta	1140
tcaagggtca	aagatgttta	tggtcttgat	gatgaagttt	cctttagaaa	tgtcaatgta	1200
ccttcaaaaa	ateggeeaeg	teegttgeat	cttggaacgg	ctacacaaat	tggtgcctta	1260
cctactgaag	gaataccttg	tttgttgaag	gtgttacttc	catctacgtg	cagtggtctg	1320
ccttctttgt	atgttaggga	tettettetg	aaccctcctg	cttacgatat	tgctctgaaa	1380
attcaagaaa	cgtgcaagct	catgagcaca	gtaacatgtt	caattccaga	gtttacctgc	1440
gtctcttctg	ctaagcttgt	gaagcttctt	gagcaacggg	aagccaacta	cattgagttc	1500
tgtcgaataa	aaaatgtgct	tgatgatgta	ttacatatgc	atagacatgc	tgagcttgtg	1560
gaaatcctga	aattattgat	ggatcctacc	tgggtggcta	ctggtttgaa	aattgacttt	1620
gacacttttg	tcaacgaatg	tcattgggcg	tctgatacaa	ttggtgaaat	gatctcttta	1680
gatgagaatg	aaagtcatca	gaatgtaagt	aaatgtgaca	atgtcccgaa	cgaattcttt	1740
tatgatatgg	agtcttcatg	gcgaggtcgc	gttaagggaa	ttcatataga	ggaagaaatc	1800
actcaagtag	aaaaatcagc	tgaggcttta	tctttagcag	tagctgagga	ttttcaccct	1860
attatatcaa	gaattaaggc	caccactgct	tcacttggtg	gcccgaaagg	cgaaatcgca	1920
tatgcaagag	agcatgagtc	tgtttggttc	aaggggaaac	ggtttacgcc	atctatctgg	1980
gctggtactg	caggggaaga	ccaaataaaa	cagctgaaac	ctgccttaga	ctcgaaagga	2040
aaaaaggttg	gagaagaatg	gtttacgacc	ccaaaggtgg	aaattgcttt	agtcagatac	2100
catgaagcta	gtgagaatgc	aaaagctcgg	gtgttggaac	tgttgcgcga	gttatccgtt	2160
aaattgcaaa	caaaaataaa	tgttcttgtc	tttgcatcta	tgcttctggt	catttcaaaa	2220
gcattatttt	cccatgcttg	tgaagggaga	aggcgaaagt	gggtttttcc	aacgcttgtc	2280
ggattcagtt	tagatgaggg	cgcaaaacca	ttagatggtg	ccagtcgaat	gaagctgaca	2340
ggcctgtcac	cttattggtt	tgatgtatct	tctggaaccg	ctgttcacaa	taccgttgac	2400
atgcaatcac	tgtttcttct	aactggacct	aacggtggtg	gtaaatcgag	tttgctcaga	2460
tcaatatgcg	cagctgctct	acttggaatt	tccggtttaa	tggttccagc	tgaatcagct	2520
tgtattcctc	actttgattc	catcatgctt	cacatgaaat	catatgacag	ccctgtagac	2580
ggaaaaagtt	ctttccaggt	agaaatgtcg	gaaatacgat	ctattgtaag	ccaggctact	2640
tcgagaagcc	tagtgcttat	agatgagata	tgccgaggga	cagagacagc	aaaaggcacc	2700
tgtatcgctg	gtagtgtggt	agagagtctt	gacacaagtg	gttgtttggg	tattgtatct	2760
actcatctcc	atggaatctt	cagtttacct	cttacagcga	aaaacatcac	atataaagca	2820
atgggagccg	aaaatgtcga	agggcaaacc	aagccaactt	ggaaattgac	agatggagtc	2880
tgcagagaga	gtettgegtt	tgaaacagct	aagagggaag	gtgttcccga	gtcagttatc	2940
caaagagctg	aagctcttta	cctctcggtc	tatgcaaaag	acgcatcagc	tgaagttgtc	3000
aaacccgacc	aaatcataac	ttcatccaac	aatgaccagc	agatccaaaa	accagtcagc	3060
tctgagagaa	gtttggagaa	ggacttagca	aaagctatcg	tcaaaatctg	tgggaaaaag	3120
atgattgagc	ctgaagcaat	agaatgtctt	tcaattggtg	ctcgtgagct	tccacctcca	3180
	gttcttcatg					3240
	atgatcttga					3300
20 00	5 5	55 5	5 5 5	2.0	55 5	-

gggt	caaç	gtt t	tcta	atac	et ta	atggt	tcaa	a ggt	caaga	agca	tgg	cttg	ca 🤄	gttaq	gagact	3360
ctat	tgat	ta a	atcaa	actco	ca to	gaaca	aaggo	c tac	ctct	ctgg	cta	accta	agc (cgat	ggaaag	3420
cacc	gtaa	att t	cgga	aacgi	tc c1	caaç	gette	g agt	cacat	cag	acgi	tagt	cag (catc	ttatag	3480
tttg	aaac	cat t	agct	tgtgi	tt to	gtagt	tgat	cat	cctct	atg	tgc	aatt	gaa (caagi	tcagtt	3540
tgct	agaa	act a	agagt	tagat	tt a	ctaaq	gaaa	c cat	gaaq	gttt	ttca	attti	tga 🤅	gatti	ttgcaa	3600
aacg	gcat	gc a	agtto	cggg1	ta aç	gtcg	gatgo	c cgo	caatt	cacc	aati	tttg	ggt (cagt	ctgtgt	3660
aatt	gtc	gtt t	cata	aaat	cc ga	attaa	acgto	g tao	cttte	gaac	aaaa	actca	agc a	agta	aacttc	3720
ttta	ttca	atc														3730
<210 <211 <212 <213	> LE > T	ENGTI	H: 13	118	bidoj	psis	tha:	Liana	a							
<400		_														
Met 1	His	Trp	Ile	Ala 5	Thr	Arg	Asn	Ala	Val 10	Val	Ser	Phe	Pro	Lув 15	Trp	
Arg	Phe	Phe	Phe 20	Arg	Ser	Ser	Tyr	Arg 25	Thr	Tyr	Ser	Ser	Leu 30	Lys	Pro	
Ser	Ser	Pro 35	Ile	Leu	Leu	Asn	Arg 40	Arg	Tyr	Ser	Glu	Gly 45	Ile	Ser	CÀa	
Leu	Arg 50	Asp	Gly	Lys	Ser	Leu 55	Lys	Arg	Ile	Thr	Thr 60	Ala	Ser	Lys	ГЛа	
Val 65	ГÀа	Thr	Ser	Ser	Asp 70	Val	Leu	Thr	Asp	Lys 75	Asp	Leu	Ser	His	Leu 80	
Val	Trp	Trp	Lys	Glu 85	Arg	Leu	Gln	Thr	Cys 90	Lys	Lys	Pro	Ser	Thr 95	Leu	
Gln	Leu	Ile	Glu 100	Arg	Leu	Met	Tyr	Thr 105	Asn	Leu	Leu	Gly	Leu 110	Asp	Pro	
Ser	Leu	Arg 115	Asn	Gly	Ser	Leu	Lys 120	Asp	Gly	Asn	Leu	Asn 125	Trp	Glu	Met	
Leu	Gln 130	Phe	Lys	Ser	Arg	Phe 135	Pro	Arg	Glu	Val	Leu 140	Leu	Cys	Arg	Val	
Gly 145	Glu	Phe	Tyr	Glu	Ala 150	Ile	Gly	Ile	Asp	Ala 155	Cys	Ile	Leu	Val	Glu 160	
Tyr	Ala	Gly	Leu	Asn 165	Pro	Phe	Gly	Gly	Leu 170	Arg	Ser	Asp	Ser	Ile 175	Pro	
Lys	Ala	Gly	Cys 180	Pro	Ile	Met	Asn	Leu 185	Arg	Gln	Thr	Leu	Asp 190	Asp	Leu	
Thr	Arg	Asn 195	Gly	Tyr	Ser	Val	Cys 200	Ile	Val	Glu	Glu	Val 205	Gln	Gly	Pro	
Thr	Pro 210	Ala	Arg	Ser	Arg	Lys 215	Gly	Arg	Phe	Ile	Ser 220	Gly	His	Ala	His	
Pro 225	Gly	Ser	Pro	Tyr	Val 230	Tyr	Gly	Leu	Val	Gly 235	Val	Asp	His	Asp	Leu 240	
Asp	Phe	Pro	Asp	Pro 245	Met	Pro	Val	Val	Gly 250	Ile	Ser	Arg	Ser	Ala 255	Arg	
Gly	Tyr	Сув	Met 260	Ile	Ser	Ile	Phe	Glu 265	Thr	Met	Lys	Ala	Tyr 270	Ser	Leu	
Asp	Asp	Gly 275	Leu	Thr	Glu	Glu	Ala 280	Leu	Val	Thr	Lys	Leu 285	Arg	Thr	Arg	

Arg	Сув 290	His	His	Leu	Phe	Leu 295	His	Ala	Ser	Leu	Arg 300	His	Asn	Ala	Ser
Gly 305	Thr	Сув	Arg	Trp	Gly 310	Glu	Phe	Gly	Glu	Gly 315	Gly	Leu	Leu	Trp	Gly 320
Glu	Сув	Ser	Ser	Arg 325	Asn	Phe	Glu	Trp	Phe 330	Glu	Gly	Asp	Thr	Leu 335	Ser
Glu	Leu	Leu	Ser 340	Arg	Val	Lys	Asp	Val 345	Tyr	Gly	Leu	Asp	350	Glu	Val
Ser	Phe	Arg 355	Asn	Val	Asn	Val	Pro 360	Ser	Lys	Asn	Arg	Pro 365	Arg	Pro	Leu
His	Leu 370	Gly	Thr	Ala	Thr	Gln 375	Ile	Gly	Ala	Leu	Pro 380	Thr	Glu	Gly	Ile
Pro 385	Cys	Leu	Leu	ГÀа	Val 390	Leu	Leu	Pro	Ser	Thr 395	CÀa	Ser	Gly	Leu	Pro 400
Ser	Leu	Tyr	Val	Arg 405	Asp	Leu	Leu	Leu	Asn 410	Pro	Pro	Ala	Tyr	Asp 415	Ile
Ala	Leu	Lys	Ile 420	Gln	Glu	Thr	Cha	Lys 425	Leu	Met	Ser	Thr	Val 430	Thr	CAa
Ser	Ile	Pro 435	Glu	Phe	Thr	CÀa	Val 440	Ser	Ser	Ala	ГÀв	Leu 445	Val	ГÀа	Leu
Leu	Glu 450	Gln	Arg	Glu	Ala	Asn 455	Tyr	Ile	Glu	Phe	Cys 460	Arg	Ile	Lys	Asn
Val 465	Leu	Asp	Asp	Val	Leu 470	His	Met	His	Arg	His 475	Ala	Glu	Leu	Val	Glu 480
Ile	Leu	Lys	Leu	Leu 485	Met	Asp	Pro	Thr	Trp 490	Val	Ala	Thr	Gly	Leu 495	Lys
Ile	Asp	Phe	Asp 500	Thr	Phe	Val	Asn	Glu 505	Cys	His	Trp	Ala	Ser 510	Asp	Thr
Ile	Gly	Glu 515	Met	Ile	Ser	Leu	Asp 520	Glu	Asn	Glu	Ser	His 525	Gln	Asn	Val
Ser	Lys 530	Cys	Asp	Asn	Val	Pro 535	Asn	Glu	Phe	Phe	Tyr 540	Asp	Met	Glu	Ser
Ser 545	Trp	Arg	Gly	Arg	Val 550	Lys	Gly	Ile	His	Ile 555	Glu	Glu	Glu	Ile	Thr 560
Gln	Val	Glu	Lys	Ser 565	Ala	Glu	Ala	Leu	Ser 570	Leu	Ala	Val	Ala	Glu 575	Asp
Phe	His	Pro	Ile 580	Ile	Ser	Arg	Ile		Ala		Thr	Ala	Ser 590	Leu	Gly
Gly	Pro	Lys 595	Gly	Glu	Ile	Ala	Tyr 600	Ala	Arg	Glu	His	Glu 605	Ser	Val	Trp
Phe	Lys 610	Gly	Lys	Arg	Phe	Thr 615	Pro	Ser	Ile	Trp	Ala 620	Gly	Thr	Ala	Gly
Glu 625	Asp	Gln	Ile	Lys	Gln 630	Leu	Lys	Pro	Ala	Leu 635	Asp	Ser	Lys	Gly	Lys 640
Lys	Val	Gly	Glu	Glu 645	Trp	Phe	Thr	Thr	Pro 650	Lys	Val	Glu	Ile	Ala 655	Leu
Val	Arg	Tyr	His 660	Glu	Ala	Ser	Glu	Asn 665	Ala	Lys	Ala	Arg	Val 670	Leu	Glu
Leu	Leu	Arg 675	Glu	Leu	Ser	Val	Lys	Leu	Gln	Thr	Lys	Ile 685	Asn	Val	Leu
Val	Phe 690	Ala	Ser	Met	Leu	Leu 695	Val	Ile	Ser	Lys	Ala 700	Leu	Phe	Ser	His
Ala	Cys	Glu	Gly	Arg	Arg	Arg	Lys	Trp	Val	Phe	Pro	Thr	Leu	Val	Gly

-continued
COILCIIIaCa

7.0E					710					71E					720
705 Phe	Ser	Leu	Asp	Glu 725	710 Gly	Ala	ГÀа	Pro	Leu 730	715 Asp	Gly	Ala	Ser	Arg	720 Met
Lys	Leu	Thr	Gly 740	Leu	Ser	Pro	Tyr	Trp 745	Phe	Asp	Val	Ser	Ser 750	_	Thr
Ala	Val	His 755	Asn	Thr	Val	Asp	Met 760	Gln	Ser	Leu	Phe	Leu 765	Leu	Thr	Gly
Pro	Asn 770	Gly	Gly	Gly	Lys	Ser 775	Ser	Leu	Leu	Arg	Ser 780	Ile	Сув	Ala	Ala
Ala 785	Leu	Leu	Gly	Ile	Ser 790	Gly	Leu	Met	Val	Pro 795	Ala	Glu	Ser	Ala	800
Ile	Pro	His	Phe	Asp 805	Ser	Ile	Met	Leu	His 810	Met	Lys	Ser	Tyr	Asp 815	Ser
Pro	Val	Asp	Gly 820	Lys	Ser	Ser	Phe	Gln 825	Val	Glu	Met	Ser	Glu 830		Arg
Ser	Ile	Val 835	Ser	Gln	Ala	Thr	Ser 840	Arg	Ser	Leu	Val	Leu 845	Ile	Asp	Glu
Ile	Сув 850	Arg	Gly	Thr	Glu	Thr 855	Ala	Lys	Gly	Thr	660 860	Ile	Ala	Gly	Ser
Val 865	Val	Glu	Ser	Leu	Asp 870	Thr	Ser	Gly	Cys	Leu 875	Gly	Ile	Val	Ser	Thr 880
His	Leu	His	Gly	Ile 885	Phe	Ser	Leu	Pro	Leu 890	Thr	Ala	Lys	Asn	Ile 895	Thr
Tyr	Lys	Ala	Met 900	Gly	Ala	Glu	Asn	Val 905	Glu	Gly	Gln	Thr	Lys 910	Pro	Thr
Trp	Lys	Leu 915	Thr	Asp	Gly	Val	Сув 920	Arg	Glu	Ser	Leu	Ala 925	Phe	Glu	Thr
Ala	930 Lys	Arg	Glu	Gly	Val	Pro 935	Glu	Ser	Val	Ile	Gln 940	Arg	Ala	Glu	Ala
Leu 945	Tyr	Leu	Ser	Val	Tyr 950	Ala	ГÀз	Asp	Ala	Ser 955	Ala	Glu	Val	Val	Lys 960
Pro	Asp	Gln	Ile	Ile 965	Thr	Ser	Ser	Asn	Asn 970	Asp	Gln	Gln	Ile	Gln 975	Lys
Pro	Val	Ser	Ser 980	Glu	Arg	Ser	Leu	Glu 985	Lys	Asp	Leu	Ala	Lys 990	Ala	Ile
Val	Lys	Ile 995	CÀa	Gly	ràs	Lys	Met 100		e Gl	u Pr	o Gl	u Al 10		le G	lu Cys
Leu	Ser 1010		e Gly	y Ala	a Arç	g Gl: 10:		eu P:	ro P	ro P		er 020	Thr	Val	Gly
Ser	Ser 102	_	s Vai	l Ty:	r Val	103		rg A:	rg P	ro A	_	ys . 035	Arg	Leu	Tyr
Ile	Gly 1040		n Th:	r Ası	o YaI	Let 104		lu G	ly A	rg I		rg . 050	Ala	His	Arg
Ala	Lys 1059		ı Gl	y Lei	ı Glr	100		er S	er Pl	he L		yr 065	Leu	Met	Val
Gln	Gly 1070	_	s Se:	r Met	. Alá	a Cy:		ln L	eu G	lu T		eu 080	Leu	Ile	Asn
Gln	Leu 108		s Glı	ı Glı	n Gly	7 Ty:		er L	eu A	la A		eu . 095	Ala	Asp	Gly
Lys	His		g Ası	n Phe	e Gly	7 Th:		er S	er S	er L		er 110	Thr	Ser	Asp
Val	Val		r Ile	e Lei	1										

63 64 -continued

<210> SEQ ID NO 3 <211> LENGTH: 3765 <212> TYPE: DNA <213> ORGANISM: Glycine max

<400> SEQUENCE: 3

· ·						
gtcagataca	gagtccttcc	ctcctcgtgt	gtggactgtg	gcgggaactc	attttgctag	60
tttgcttcct	ctctctctct	cgttcccatt	caacgcaatg	tacagggtag	ccacaagaaa	120
cgtcgccgtt	ttcttccctc	gttgctgttc	cctcgcgcac	tacactcctt	ctctatttcc	180
cattttcact	tcattcgctc	cctctcgttt	ccttagaata	aatggatgtg	taaagaatgt	240
gtcgagttat	acggataaga	aggtttcaag	ggggagtagt	agggccacca	agaagcccaa	300
aataccaaat	aacgttttag	atgataaaga	ccttcctcac	atactgtggt	ggaaggagag	360
gttgcaaatg	tgcagaaagt	tttcaactgt	ccagttaatt	gaaagacttg	aattttctaa	420
tttgcttggc	ctgaattcca	acttgaaaaa	tggaagtctg	aaggaaggaa	cactcaactg	480
ggaaatgttg	caattcaagt	caaaatttcc	acgtcaagta	ttgctttgca	gagttgggga	540
attctatgaa	gcttggggaa	tagatgcttg	tattcttgtt	gaatatgtgg	gtttaaatcc	600
cattggtggt	ctgcgatcag	atagtatece	aagagctagt	tgtcctgtcg	tgaatcttcg	660
gcagacttta	gatgatctga	caacaaatgg	ttattcagtg	tgcattgtgg	aggaggctca	720
gggcccaagt	caagctcgat	ccaggaaacg	tcgctttata	tctgggcatg	ctcatcctgg	780
aaatccctat	gtatatggac	ttgctacagt	tgatcatgat	cttaactttc	cagaaccaat	840
gcctgtagta	ggaatatctc	attctgcgag	gggttattgc	attaatatgg	tactagagac	900
catgaagaca	tattcttctg	aagattgctt	gacagaagaa	gcagttgtta	cgaagcttcg	960
tacttgccaa	tatcattact	tatttttgca	tacatccttg	aggcggaatt	cttgtggaac	1020
ctgcaactgg	ggagaatttg	gtgagggagg	gctattatgg	ggagaatgta	gttctagaca	1080
ttttgattgg	tttgatggca	accctgtctc	cgatcttttg	gccaaggtaa	aggaacttta	1140
tagtattgat	gatgaggtta	cctttcggaa	cacaactgtg	tcttcaggac	atagggctcg	1200
accattaact	cttggaacat	ctactcaaat	tggtgccatt	ccaacagaag	gaataccttc	1260
tttgttgaag	gttttacttc	catcaaattg	caatggatta	ccagtattgt	acataaggga	1320
acttcttttg	aatcctcctt	catatgagat	tgcatccaaa	attcaagcaa	catgcaaact	1380
tatgagcagt	gtaacgtgtt	caattccaga	atttacatgt	gtttcgtcag	caaagcttgt	1440
aaagctactt	gaatggaggg	aggtcaatca	tatggaattt	tgtagaataa	agaatgtact	1500
ggatgaaatt	ttgcagatgt	atagtacctc	tgagctcaat	gaaatattga	aacatttaat	1560
cgagcccaca	tgggtggcaa	ctgggttaga	aattgacttt	gaaaccttgg	ttgcaggatg	1620
tgagatcgca	tctagtaaga	ttggtgaaat	agtatctctg	gatgatgaga	atgatcagaa	1680
aatcaactcg	ttctctttta	ttcctcacga	attttttgag	gatatggagt	ctaaatggaa	1740
aggtcgaata	aaaagaatcc	acatagatga	tgtattcact	gcagtggaaa	aagcagctga	1800
ggccttacat	atagcagtca	ctgaagattt	tgttcctgtt	gtttctagaa	taaaggctat	1860
tgtagcccct	ctcggaggtc	ctaagggaga	aatatcttat	gctcgggagc	aagaagcagt	1920
ttggttcaaa	ggcaaacgct	ttacaccgaa	tttgtgggct	ggtagccctg	gagaggaaca	1980
aattaaacag	cttaggcatg	ctttagattc	taaaggtaga	aaggtagggg	aggaatggtt	2040
taccacacca	aaggtcgagg	ctgcattaac	aaggtaccat	gaagcaaatg	ccaaggcaaa	2100
				_		

-continued

agaaagagtt ttggaaattt taaggggact cgctgctgag ttgcaataca gtataaacat	2160
tettgtettt tetteeatgt tgettgttat tgecaaaget ttatttgete atgeaagtga	2220
agggagaaga aggagatggg tettteecac gettgtagaa teecatgggt ttgaggatgt	2280
gaagtcattg gacaaaaccc atgggatgaa gataagtggt ttattgccat attggttcca	2340
catagcagaa ggtgttgtgc gtaatgatgt tgatatgcaa tcattatttc tgttgacagg	2400
accgaatggt ggtgggaaat caagttttct taggtcaatt tgtgctgctg cactacttgg	2460
gatatgtgga ctcatggttc ctgcagaatc agccctaatt ccttattttg actccatcac	2520
getteatatg aagteatatg atagteeage tgataaaaag agtteettte aggttgaaat	2580
gtcagaactt cgatccatca ttggcggaac aaccaacagg agccttgtac ttgttgatga	2640
aatatgccga ggaacagaaa ctgcaaaagg gacttgcatt gctggtagca tcattgaaac	2700
ccttgatgga attgggtgtc tgggtattgt atccactcac ttgcatggaa tatttacttt	2760
gcccctaaac aaaaaaaaca ctgtgcacaa agcaatgggc acaacatcca ttgatggaca	2820
aataatgcct acatggaagt tgacagatgg agtttgtaaa gaaagtcttg cttttgaaac	2880
ggctaagagg gaaggaattc ctgagcatat tgttagaaga gctgaatatc tttatcagtt	2940
ggtttatgct aaggaaatgc tttttgcaga aaatttccca aatgaagaaa agttttctac	3000
ctgcatcaat gttaataatt tgaatggaac acatcttcat tcaaaaaaggt tcctatcagg	3060
agctaatcaa atggaagttt tacgcgagga agttgagaga gctgtcactg tgatttgcca	3120
ggatcatata aaggacctaa aatgcaaaaa gattgcattg gagcttactg agataaaatg	3180
tctcataatt ggtacaaggg agctaccacc tccatcggtt gtaggttctt caagcgtcta	3240
tgtgatgttc agaccagata agaaactcta tgtaggagag actgatgatc tcgagggacg	3300
ggtccgaaga catcgattaa aggaaggaat gcatgatgca tcattccttt attttcttgt	3360
cccaggtaaa agcttggcat gccaatttga atctctgctc atcaaccaac tttctggtca	3420
aggetteeaa etgageaata tagetgatgg taaacatagg aattttggea etteeaacet	3480
gtatacataa ctagtctata gacattgata ttatctacct caatcgcgta tttttgcctc	3540
ttttaaatgg ctcaaagact tcaatcatcg atgttaagtt taggaaacaa tgtctgcagc	3600
atttttgtta gaattagttg ctgcagctgc atttatgtcc acatcttcaa gtgtggaaat	3660
tettgtteat tagettgtaa gtacaaaagt gtttgtgtae gtttggagte eegagagaat	3720
atacaagtac aaatgaacaa atatattagt aatgaatgca ctaga	3765
<210> SEQ ID NO 4 <211> LENGTH: 3642 <212> TYPE: DNA <213> ORGANISM: Zea mays	
<400> SEQUENCE: 4	
gegeactace cegagaaaeg tgegaeggga aceteegegg tteeceaagt tegeeteett	60
cactactete gegeeeegge aegeetgaaa aacceeacce eteetgeege teegeetete	120
ccatcactte ccaegecect egeogectee catterageg tggacaegae gecactegee	180
agcacggaga cgcgcgcctc gaagcactac tgcactagcc agccgtcgtt cttccgcgcc	240
ggcgccatgc accgggtgct cgtgagctcg cttgtggccg ccacgccgcg atggctgccc	300
ctegeegaet ceatecteeg gegeegeegg eegegetget eccetettee egtgetgatg	360
ttcgatcgga gggcttggtc caagccaagg aaggtctcac gaggcatttc agtggcgtcc	420

aggaaagcta acaaacaggg agaatactgt gatgaaagta tgctgtcgca tatcatgtgg

tggaaagaga	aaatggagag	gtgcagaaaa	ccatcatcca	tacaattgac	tcagaggctt	540
gtgtattcaa	atatattagg	gttggatccg	aatttaagaa	acggaagctt	gaaagatgga	600
accctgaaca	tggagatttt	ggtatttaaa	tcaaaatttc	ctcgtgaggt	tctactttgc	660
agagtaggag	atttctatga	agctatcggt	tttgatgcct	gtattctcgt	agagcatgca	720
ggcttaaatc	cttttggagg	tttgcgttcc	gacagtattc	ctaaagctgg	gtgtccagtc	780
gtgaatttac	ggcagacatt	ggatgatttg	actcgatgtg	gttattccgt	gtgcatagtc	840
gaggaaattc	aaggcccaac	tcaagcccgt	gctcggaaaa	gtcgatttat	ttctgggcat	900
gcccatcctg	gtagtcctta	tgtatttggt	cttgctgaag	tagaccatga	tgtagagttc	960
cctgatccga	tgcctgttgt	tgggatttca	cattctgcaa	aaggttattg	cttgatatct	1020
gtgctagaga	caatgaaaac	ttattcagct	gaggagggct	taacagagga	ggctattgtt	1080
actaagctcc	gcatatgtcg	ttatcaccat	ctataccttc	acaattcttt	gaagaataat	1140
tcttcaggga	catcacgctg	gggtgaattc	ggtgaaggtg	ggctcttgtg	gggagagtgc	1200
agtgggaagt	cctttgagtg	gtttgacggt	tcacctattc	aagaactttt	atgcaaggta	1260
cgggaaatat	atggccttga	tgagaaaacg	gtttttcgcg	atgtcaccgt	ctcattggaa	1320
ggcaggcccc	aacctcttca	tcttgggact	gctactcaaa	ttggagtcat	accaactgag	1380
ggaataccga	gtttgttaag	aatggtgctt	ccttcaaatt	gtggcgggct	tccatcaatg	1440
tatattagag	atcttcttct	taatcctcca	tcatttgagg	ttgcagcagc	gatccaagag	1500
gcttgcaggc	ttatgggcaa	cataacctgc	tccattcctg	aatttacatg	catatcagca	1560
gcaaagcttg	tgaaactact	tgagtcgaaa	ggggtcaatc	acattgaatt	ttgtagaata	1620
aaaaatgtcc	ttgatgagat	tatgctcatg	aacagggatg	ctgagctttc	tgcaatcctg	1680
catgaattac	tggtacctgc	ttctgtggct	actggtttca	aagttgaagc	tgatatgcta	1740
atgaacggat	gtagcattat	ttcacaacga	atagctgaag	tgatttcttt	aggtgttgaa	1800
agtgatcagg	caataacttc	attggaatat	attccaaagg	agttcttcaa	tgatatggag	1860
tcatcttgga	aggggcgcgt	gaaaaggatc	catgctgaag	aagagtttgc	aaatgttgat	1920
agggctgctg	aggcattatc	aattgcggtc	attgaagatt	ttatgccaat	tatttcgagg	1980
gtgaaatctg	tagtgtcctc	gaatggaggt	ttgaaaggag	aaatcggtta	tgcaaaagaa	2040
catgaagctg	tttggtttaa	aggaaagaga	ttcataccaa	atgtatgggc	taacacacct	2100
ggtgagcagc	aaataaaaca	actgaagcct	gcaattgatt	caaaaggcag	aaaggttggg	2160
gaggaatggt	ttacaacaag	caaagttgag	aatgctttag	ccaggtacca	tgaagcttgt	2220
gataatgcaa	gaaataaagt	tcttgagctg	ttgagaggcc	tttctagtga	attgcaggac	2280
aaaattaaca	tacttgtctt	ttgctcaaca	ctgctcatca	ttgcaaaagc	actttttggt	2340
catgttagtg	aggctcgaag	aagaggttgg	atgcttccta	ctatatctcc	cttatcaaag	2400
gactgtgttg	tggaggaaag	ttcaagtgca	atggatttag	taggactatt	tccttactgg	2460
cttgatgtta	atcaaggaaa	tgcaatattg	aatgatgtcc	acatgcactc	tttatttgtt	2520
cttactggcc	caaatggtgg	tggtaaatct	agcatgttgc	gatcagtctg	tgcagctgtg	2580
cttcttggaa	tatgtggcct	gatggtacct	tcaacttcag	ctgtaatccc	acattttgat	2640
tccattatgc	tgcatatgaa	agcctatgat	agcccagcag	atgggaaaag	ttcatttcag	2700
			agccgagcta			2760
			gcaaaaggaa			2820
			J		- 55 50400	_020

-continued

attgaaagac ttgataatgt tggctgccta ggcatcatat caactcacct gcatgggatt	2880
ttcgacctgc ctctctcact tagcaacact gatttcaaag ctatgggaac tgaagtggtc	2940
gatggatgca ttcatccaac atggaaactg attgatggca tatgtagaga aagccttgct	3000
tttcaaacag caaggaggga aggcatgcct gacttgataa tcaccagggc tgaggagcta	3060
tatttgagta tgagtacaaa taacaagcag ggagcatcag tggcgcacaa tgagcctcct	3120
aatggcagcc ccagtgtaaa tggcttggtt gaggagcctg aatctctgaa gaacagacta	3180
gaaatgctgc ctggtacctt tgagccgctg cggaaggaag ttgagagtgc tgttactacg	3240
atgtgtaaga aaatactgtc ggacctttac aacaaaagta gcatcccaga actggtcgag	3300
gtggtctgcg ttgctgtagg tgctagagag caaccaccgc cttccactgt tggcagatct	3360
agcatctacg tgattatcag aagcgacaac aggctctatg ttggacagac ggacgatctt	3420
ctggggcgct tgaacgccca cagatcgaag gaaggcatgc gggacgctac ggtattatac	3480
gtettggtee etggeaagag egttgeetge eagetggaaa eeetteteat aaaceagete	3540
ccttcgaggg gcttcaagct catcaacaag gcagacggga agcacaggaa cttcggtata	3600
tetegaatet etggegagge agttgetaet ggaeggaaet ag	3642
<210> SEQ ID NO 5 <211> LENGTH: 3373 <212> TYPE: DNA <213> ORGANISM: Lycopersicon esculentum	
<400> SEQUENCE: 5	
atgtattggg ttacggcaaa aaacgtcgtc gtttcagttc cccgttggcg ttcactgtcc	60
cttttcctcc gtccaccact tcgccggcgt ttcttatctt tctctccaca tactctgtgc	120
cgagagcaga tacgttgcgt gaaggagcgg aagttttttg ccacaacggc aaaaaaactc	180
aaacaaccaa aaagtattcc agaggaaaaa gactatgtta atattatgtg gtggaaagag	240
agaatggaat tettgagaaa geettettee getettetgg etaagagget tacatattgt	300
aacttgctgg gtgtggatcc gagtttgaga aatggaagtc ttaaagaggg aacacttaac	360
tcggagatgt tgcagttcaa gtcaaaattt ccacgtgaag ttttgctctg tagagtaggt	420
gatttttatg aagctattgg attcgatgct tgtattcttg tggaatatgc tggtttaaat	480
ccatttggtg gcctgcactc agatagtata ccaaaagctg gttgtccagt tgtgaatcta	540
agacagacgc ttgatgatct cacacgtaat ggtttctctg tgtgcgtcgt ggaggaagtt	600
cagggtccaa ctcaagctcg tgctcgtaag agtcgattta tatcagggca tgcacatcca	660
ggcagtccct atgtttttgg ccttgttgga gatgatcaag atcttgattt tccagaacca	720
atgeetgttg ttggaatate eegtteageg aaggggtatt geattatete tgtttaegag	780
actatgaaga cttactctgt ggaagatggc ctaactgaag aagccgtagt caccaaactt	840
cgtacttgtc gatgccatca tttttttttg cataattcat tgaagaacaa ttcctcagga	900
acatcgcgtt ggggagagtt tggtgaaggt ggacttttgt ggggagaatg taatgctaga	960
cagcaggaat ggttggatgg caatcctatc gatgagcttt tgttcaaggt aaaagagctt	1020
tatggtctca atgatgacat tccattcaga aatgtcactg ttgtttcaga aaataggccc	1080
cgtcctttac accttggaac tgccacacaa attggtgcta ttccaaccga agggattcca	1140
tgtttgttaa aggtgttgct tcctcctcat tgcagtggtc taccagtcct gtatattagg	1200
gatettettt taaateeace ageetatgag atttetteag acatteaaga ggeatgeaga	1260

cttatgatga gtgtcacatg ttcaattcct gattttacct gtatttcatc tgcaaagctg 1320

gtcaagctgc	ttgagttgag	ggaggcaaat	cacgttgagt	tctgcaaaat	aaagagcatg	1380
gtcgaagaga	tactgcagtt	gtatagaaat	tcagagcttc	gtgctattgt	agagttactg	1440
atggatccta	cttgggtggc	aactgggttg	aaagttgatt	ttgatacact	agtaaatgaa	1500
tgtggaaaga	tttcttgtag	aatcagtgaa	ataatatccg	tacatggtga	aaatgatcaa	1560
aagattagtt	cctatcctat	catcccaaat	gatttctttg	aagatatgga	gttgttgtgg	1620
aaaggccgtg	tcaagaggat	ccatttggag	gaagcatatg	cagaagtaga	aaaggctgcg	1680
gatgctttat	ctttagccat	aacagaagat	ttcctaccta	ttatttcaag	aataagggcc	1740
acgatggccc	cacttggagg	aactaaaggg	gagattttgt	atgcccgtga	gcatggagct	1800
gtatggttta	agggaaagag	atttgtacca	actgtttggg	ctggaaccgc	tggagaagaa	1860
caaattaagc	aactcagacc	tgctctagat	tcaaagggga	agaaggttgg	agaagaatgg	1920
ttcactacaa	tgagggtgga	agatgcaata	gctaggtatc	acgaggcaag	tgctaaggca	1980
aagtcaaggg	tcttggaatt	gctaagggga	ctttcttctg	aattactatc	taagatcaat	2040
atccttatct	ttgcatctgt	cttgaatgtg	atagcaaaat	cattattttc	tcatgtgagt	2100
gaaggaagaa	gaagaaattg	gattttccca	acaatcacac	aatttaacaa	atgtcaggac	2160
acagaggcac	ttaatggaac	tgatggaatg	aagataattg	gtctatctcc	ttattggttt	2220
gatgcagcac	gagggactgg	tgtacagaat	acagtagata	tgcagtccat	gtttctttta	2280
acaggtccaa	atggtggggg	caaatcaagc	ttgctgcgtt	cgttgtgtgc	agctgcattg	2340
ctaggaatgt	gtgggttcat	ggttccagct	gaatcagctg	tcattcctca	ttttgactca	2400
attatgctgc	atatgaaatc	atatgatagt	cctgttgatg	gaaaaagttc	atttcagatt	2460
gaaatgtctg	aaattcggtc	tctgattact	ggtgccactt	caagaagtct	tgtacttata	2520
gatgaaatat	gtcgaggaac	agaaacagca	aaagggacat	gtattgctgg	aagtgtcata	2580
gaaaccctgg	acgaaattgg	ctgtttggga	attgtatcaa	cccacttgca	tggaatattt	2640
gatttacccc	tgaaaatcaa	gaagaccgtg	tataaagcaa	tgggagctga	atatgttgac	2700
ggtcaaccaa	taccaacttg	gaaactcatt	gatgggatct	gtaaagagag	tctagcattt	2760
gaaacagctc	agagagaagg	aattccagaa	atattaatcc	aaagagcaga	agaattgtat	2820
aattcagctt	acgggaatca	gataccaagg	aagatagacc	aaataagacc	tctttgttca	2880
gatattgacc	tcaatagcac	agataacagt	tctgaccaat	taaatggtac	aagacaaata	2940
gctttggatt	ctagcacaaa	gttaatgcat	cgaatgggaa	tttcaagcaa	gaaacttgaa	3000
gatgctatct	gtcttatctg	tgagaagaag	ttaattgagc	tgtataaaat	gaaaaatccg	3060
tcagaaatgc	caatggtgaa	ttgcgttctt	attgctgcca	gggaacagcc	ggctccatca	3120
acaattggtg	cttcaagtgt	ctatataatg	ctaagacctg	acaaaaagtt	gtatgttgga	3180
cagactgatg	atcttgaggg	cagagtacgt	gctcatcgct	tgaaggaggg	aatggaaaac	3240
gcgtcattcc	tatatttctt	agtctctggc	aagagcatcg	cctgccaatt	ggaaactctt	3300
ctaataaatc	aacttcctaa	tcatggtttt	cagctaacaa	acgttgctga	tggtaagcat	3360
cgtaattttg	gca					3373

<210> SEQ ID NO 6 <211> LENGTH: 3180 <212> TYPE: DNA <213> ORGANISM: Sorghum bicolor

<400> SEQUENCE: 6

atgcaccggg	tgctcgtgag	ctcgctcgtg	gccgccacgc	cgcggtggct	cccctcgcc	60
gactccatcc	tccggcgccg	ccgcccgcgc	tgctctcctc	ttcccatgct	gctattcgac	120
cggagggctt	ggtccaagcc	aaggaaggtc	tcacgaggca	tctcagtggc	gtctaggaaa	180
gctaacaaac	agggagaata	ttgtgatgaa	agcatgctat	cgcatatcat	gtggtggaaa	240
gagaaaatgg	agaagtgcag	aaaaccatca	tccgtacaat	tgactcagag	gcttgtgtat	300
tcaaatatat	tagggttgga	tccaaatcta	agaaatggaa	gcttgaaaga	tggaaccctg	360
aacatggaga	ttttgctatt	taaatcaaaa	tttcctcgtg	aggttctact	ttgcagagta	420
ggagacttct	atgaagctat	tggttttgat	gcctgtattc	tcgtagagca	tgcaggctta	480
aatccttttg	gaggtttgcg	ttctgacagt	atccctaaag	ctgggtgtcc	agtcgtgaat	540
ttacggcaga	cattggatga	tttgactcga	tgtggttatt	ctgtgtgcat	agttgaggaa	600
attcaaggcc	caacacaagc	ccgttcccgg	aaaagtcgat	ttatttctgg	gcatgcccat	660
cctggtagtc	cttatgtatt	tggtcttgct	gaagtagacc	atgatgtaga	gttccctgat	720
ccgatgcctg	ttgttgggat	ttcacattct	gcaaaaggtt	attgcttgat	atctgtgcta	780
gagacaatga	aaacttattc	agctgaggag	ggcttaacag	aagaggctat	tgttactaag	840
ctccgcatat	gtcgttatca	tcatctatac	cttcacaatt	ctttgaagaa	taattcttca	900
gggacatcac	gctggggtga	attcggtgaa	ggagggctct	tgtggggaga	gtgcagtggg	960
aagtcctttg	agtggtttga	tggtttacct	attgaagaac	ttttatgcaa	ggtacgggaa	1020
atatatggcc	ttgatgagaa	aactgttttt	cgcaatgtca	ccgtctcatt	ggaaggcagg	1080
ccccaacctc	tttatcttgg	aactgctact	caaattggag	tcataccaac	tgagggaata	1140
ccgagtttgc	taaaaatggc	actcccttca	agttgtggcg	ggcttccatc	aatgtatatt	1200
agagatette	ttcttaatcc	tccatcattt	gatgttgcgg	cageggteea	agaggettge	1260
aggcttatgg	ggagcataac	ttgttctgtt	cctgaattta	cttgcatatc	acttgtgaag	1320
ctacttgagt	ctaaagaggt	caatcacatt	gaattttgta	gaataaaaaa	tgtccttgat	1380
gagattatgc	tcatgaacag	gaatgctgag	ctttctgcaa	tcctgaacaa	attgctggta	1440
cctggttctg	tggctactgg	tttgaaagtt	gaagctgata	tgctagtcat	tgaagatttt	1500
atgccaatta	tttcaagggt	gaaatctgta	gtgtcctcaa	atggaggttc	gaaaggagaa	1560
atctgttatg	caaaagaaca	tgaagctgtt	tggtttaaag	gaaagcgatt	cacaccaact	1620
gtatgggcta	acacacctgg	tgagcagcaa	ataaaacaac	tgaagcctgc	aattgattcg	1680
aaaggcagaa	aggttgggga	ggaatggttt	acaacaagca	aagttgagaa	tgctttagcc	1740
aggtaccatg	aagcttgtga	taatgcaaga	aataaagttg	ttgagctgtt	gagagggctt	1800
tcaagtgaat	tgcaggacaa	aattaacata	cttgtctttt	gctcaacact	gctcatcatt	1860
gcaaaagcac	tttttggtca	tgttagtgag	gctcggagaa	gaggctggat	gcttcctact	1920
atatttccct	tgtcaaagga	ctgtgttgca	gaggaaagtt	caaatgcaat	ggatttagta	1980
ggactctttc	cttactggct	tgatgttaat	caaggaaatg	caatattgaa	tgatgtccac	2040
atgcactctt	tatttgttct	tactggtcca	aatggtggtg	gtaaatctag	tatgttgcga	2100
tcagtctgtg	cagctgcgct	gcttggaata	tgtggcctga	tggtaccttc	aacttcagct	2160
gtaatcccgc	attttgattc	cattatgctg	catatgaaag	cctacgatag	cccagccgat	2220
gggaaaagtt	catttcagat	tgaaatgtcg	gagatacgtg	ctttagtcag	ccgagctact	2280
gctaggagtc	ttgtcctgat	tgatgaaata	tgtaggggca	cagaaactgc	aaaaggaacc	2340
		cgaaaggctg				2400
		5 55 5				

actcacctgc atgggatttt	tgacttgcct	ctctcactca	gcactactga	tttcaaagct	2460
atgggaactg aagtggtcga	cgggtgcatt	catccaacat	ggaaactgat	ggatggcatc	2520
tgtagagaaa gccttgcttt	tcaaacagcc	aggagggaag	gcatgcctga	gttcataatc	2580
agaagggctg aggagctata	tttgactatg	agtacaaata	acaagcagac	cgcatcaatg	2640
gtccacaatg agcctcgtaa	tgacagcccc	agtgtaaatg	gcttggttga	gaagcctgaa	2700
tatctgaaat acagactaga	aattctgcct	ggtacctttg	agccgttgcg	gagggaagtt	2760
gagagtgctg ttactatgat	atgcaagaaa	aaactgttgg	atctttacaa	taaaagtagc	2820
atcccagaac tggttgaggt	ggtctgtgtt	gctgtaggtg	ctagagagca	accaccacct	2880
tccactgttg gcaggtctag	catctatgtg	attatcagaa	gcgacaacaa	gctttatgtt	2940
ggacagacgg atgatettet	ggggcgcctt	cacgcccaca	gatcgaagga	aggcatgcag	3000
gatgctacga tattatacat	cttggttcct	ggcaagagcg	ttgcctgcca	gctggaaacc	3060
cttctcataa atcagcttcc	ttcgaggggc	ttcaagctca	tcaacaaggc	agacggaaag	3120
cataggaact teggtatate	tcgaatctct	ggagaggcaa	tegecaceca	gctaaactaa	3180
<210> SEQ ID NO 7 <211> LENGTH: 3399 <212> TYPE: DNA <213> ORGANISM: Oryza <400> SEQUENCE: 7	sativa				
atggccattc agcggctgct	cgcgagctcg	ctcgtggccg	ccacgccgcg	gtggcttccc	60
gtcgccgccg actcgtttct					120
ctgctattta acaggaggtc	ctggtctaaa	ccaaggaaag	tctcacgaag	catttccatt	180
gtgtctagga agatgaacaa	acaaggagat	ctctgtaatg	aaggcatgct	gccacatatt	240
ctgtggtgga aagagaaaat	ggagaggtgc	aggaaaccat	catcaatgca	attgactcag	300
agacttgtgt attcaaatat	tttaggattg	gatccaactt	taagaaatgg	aagcttgaag	360
gatggaagcc tgaacacgga	aatgttgcaa	ttcaaatcga	agtttcctcg	tgaagttcta	420
ctttgcagag tgggagattt	ctacgaggct	gttgggtttg	atgcatgtat	ccttgtggag	480
catgcaggct taaatccttt	tggaggcttg	cgttctgata	gtattccaaa	agctggatgt	540
ccagtcatga atttgcggca	gacattggat	gatttgactc	gatgtggtta	ctctgtgtgc	600
atagttgaag aaattcaagg	cccaacccaa	gctcgtgcta	ggaaaggccg	atttatttct	660
ggccatgcac atcctggtag	tccttatgta	tttggtcttg	ctgaagtaga	ccatgatgtt	720
gagttccctg atccaatgcc	tgtagttggg	atttcacgat	ctgcaaaagg	ctattgcctg	780
atttctgtgc tagagacaat	gaaaacatat	tcagctgagg	agggcttaac	agaggaagca	840
gttgttacta agcttcgcat	atgccgttat	catcatctat	accttcatag	ttctttgagg	900
aacaattett caggeacate	acgctgggga	gaatttggcg	aaggtgggct	attgtgggga	960
gagtgcagtg gaaaatcttt	tgagtggttt	gatggtaatc	ctattgaaga	actgttatgc	1020
aaggtaaggg aaatatatgg	gcttgaagag	aagactgttt	tccgtaatgt	cagtgtctca	1080
ttggaaggga ggcctcaacc	cttgtatctt	ggaacagcta	ctcaaattgg	ggtgatacca	1140
actgagggaa tacccagttt	gctaaaaatt	gtteteeete	caaactttgg	tggccttcca	1200
tcattgtata ttagagatct	tcttcttaac	cctccatctt	ttgatgttgc	atcatcagtt	1260
caagaggett geaggettat	gggtagcata	acttgctcga	ttcctgaatt	tacatgcata	1320

ccggcagcaa	agcttgtgaa	attactcgag	tcaaaagagg	ttaatcacat	cgaattttgt	1380
agaataaaga	atgtcctcga	tgaggtgttg	ttcatgggta	gcaatgctga	gctttctgct	1440
atcctgaata	aattgcttga	teetgeegee	atagttactg	ggttcaaagt	tgaagccgat	1500
atactagtga	atgaatgtag	ctttatttca	caacgtatag	ctgaagtaat	ctctttaggt	1560
ggtgaaagtg	accaggcaat	aacttcatct	gaatatattc	cgaaagagtt	cttcaatgat	1620
atggagtcat	cttggaaggg	acgtgtaaaa	agggtgcatg	ctgaagagga	gttctcaaat	1680
gttgatatag	ctgctgaggc	actgtcaaca	gcggtcattg	aagattttct	gccaattatt	1740
tcaagagtaa	aatctgtgat	gtcctcaaat	ggaagttcga	agggagaaat	cagttatgca	1800
aaagagcatg	aatctgtttg	gtttaaaggg	aggcgattca	caccaaatgt	gtgggccaac	1860
actcctggtg	aactacagat	aaagcaattg	aagcctgcaa	ttgactcaaa	aggtagaaag	1920
gtcggagaag	aatggttcac	cactatcaaa	gttgagaatg	ctttaaccag	gtaccatgaa	1980
gcttgtgata	atgcaaaacg	taaagttctt	gagttgttga	gaggactttc	aagtgaattg	2040
caggacaaga	ttaatgtcct	tgtcttttgc	tcaacgatgc	tcatcataac	aaaagcactt	2100
tttggtcatg	ttagtgaagg	acgaagaagg	ggttgggtgc	ttcctactat	atctcccttg	2160
tgtaaggata	atgttacaga	ggaaatctca	agtgaaatgg	aattgtcagg	aacttttcct	2220
tactggcttg	atactaacca	agggaatgca	atactgaatg	atgtccatat	gcactctttg	2280
tttattctta	ctggtccaaa	cggtggtggt	aaatccagta	tgctgagatc	agtctgtgct	2340
gctgcattac	ttggaatatg	tggcctgatg	gtgccagctg	cttcagctgt	catcccacat	2400
ttcgattcca	tcatgctgca	tatgaaagca	tatgatagcc	cagctgatgg	taaaagttcg	2460
tttcagattg	aaatgtcaga	gatacgatct	ttagtctgcc	gagctacagc	taggagtett	2520
gttctaattg	atgaaatatg	taggggcaca	gaaacagcaa	aaggaacatg	tatagetggt	2580
agcatcattg	aaagactcga	taatgttggc	tgcataggca	tcatatcaac	tcatttgcat	2640
ggcatttttg	accttccact	gtcactccac	aatactgatt	tcaaagctat	gggaaccgaa	2700
atcatcgata	ggtgcattca	gccaacatgg	aaattaatgg	atggcatctg	tagagagagt	2760
cttgcttttc	aaacagccag	gaaagaaggt	atgcctgact	tgataattag	aagagctgag	2820
gaactatatt	tggctatgag	cacaaacagc	aagcagacat	catcagctgt	ccaccatgaa	2880
atatccatag	ccaactctac	tgtaaatagc	ttggttgaga	agcctaatta	cctgagaaat	2940
ggactagagc	ttcaatctgg	tteettegga	ttactaagaa	aagaaattga	gagtgttgtt	3000
accacaatat	gcaagaagaa	actgttggat	ctctacaaca	aaaggagcat	ctcagaactg	3060
attgaggtgg	tetgtgttge	tgtgggtgct	agggagcaac	ccccaccttc	aactgttggc	3120
aggtccagca	tttatgtaat	tatcagacgt	gacagcaagc	tctatattgg	acagacggat	3180
gatcttgtgg	gtcgacttag	tgctcacaga	tcgaaggaag	gtatgcagga	tgccacgata	3240
ttatatattt	tggtacctgg	gaagagcatt	gcatgccaac	tggaaactct	tctcataaat	3300
cagctacctt	tgaaaggttt	caagctcatc	aacaaggcag	atggcaagca	tcgaaatttc	3360
ggtatatctc	ttgtcccagg	agaggcaatt	gccgcatag			3399
<210> SEO 3	ID NO 8					

<210> SEQ ID NO 8 <211> LENGTH: 3381 <212> TYPE: DNA <213> ORGANISM: Brachypodium distachyon

<400> SEQUENCE: 8

-continued

120	gctattccac	tccccgtcct	cgttccccgc	ccgcccgcgc	teeggegeeg	gactctatcg
180	taataaggtg	caatggtgtc	cgaggcatta	gaaggtttca	acaaaccaag	agatcattgt
240	gtggaaagag	atattatgtg	atgctgtcac	caatgaaggc	gagatetetg	aacaaacagg
300	tgtgtactct	ctcagagact	gtgcagttga	accatcatct	gctgcaggaa	aaaatggaga
360	aaccctgaac	taaaagatgg	aatggaagct	aactttaagg	ggttggatcc	aatatattag
420	cagagtagga	tcctactttg	ccacgtgagg	atcaaagttt	tacaatttaa	atggagatgt
480	aggcctaaat	tagagcatgc	tgcattcttg	gtttgatgcc	aagccattgg	gatttctatg
540	catgaatttg	gatgtccaat	ccaaaagctg	tgacagtatt	gcttgcgttc	ccttttgggg
600	tgaggaaatt	tgtgcatagt	ggttattctg	gactcggtct	tggatgattt	cggcaaacat
660	tgcgcatcct	tetetggeea	ggtcgattta	tgctcggaaa	ctcaagcccg	caaggcccaa
720	teetgaeeca	atcttgagtt	gtagatcatg	tettgetgaa	atgtatttgg	ggcagtcctt
780	tgtgctagag	gcttgatttc	aaaggctatt	acgctctgca	ttgggatttc	atgcctgtag
840	gactaagctg	aagctgtagt	ctaacagaag	tgaggagggc	cttattcagc	acgatgaaaa
900	ttcttcaggg	tgaggaataa	cacagttctt	tctatacctt	gttatcatca	cgcatatgcc
960	cagtggaaag	ggggagagtg	ggactcttgt	cggagaggga	ggggggaatt	acatcacgct
1020	aagggagata	tatgcaaggt	gaggaacttt	ttctcctatt	ggtttgatgg	tgttttgaat
1080	agggaggcct	tctcattgga	aatgtcactg	taatttccgc	atgagaaaac	tatgggctgg
1140	gggaattccc	tacaaacgga	attggagtga	tgctactcaa	atcttggaac	caacctttat
1200	gtatatcaga	ttccatcaat	tatggcgggc	ccctccaaac	aaatgctact	agtttactaa
1260	ggcttgcagg	caattcagga	gtcgcgtctg	atcttttgat	ttaatcctcc	gatcttcttc
1320	agcgaagctt	gcataccatc	gaatttactt	ttcgattcct	gcataacttg	cttatgggca
1380	aaagaatgtc	tttgtagaat	cacattgaat	agaggttaat	tcgagtcaaa	gtgaaattac
1440	ggacaaattg	ctgctatcat	actgagcttt	gaatggaaac	ttatattaat	cttgatgaca
1500	aattagagaa	ctgatatact	aaagttgatg	tactggtttg	cttcggtggt	ctcgaacctg
1560	aagcgatcag	taggtgggga	gtcatctctt	tataggtgaa	tctcacaacg	tgtagcctta
1620	gtcatcttgg	atgatatgga	gagttcttta	tattcccaag	catcggaata	gcaataactt
1680	tgtagctgct	caaatgtcga	gaagagttca	tcatgctgaa	tgaaaagggt	aaggggcgtg
1740	agttaaatct	ttattgtaag	tttctgccaa	aactgaagat	caaccgcggt	gaagcattat
1800	acacgaagct	atgcaaaaga	gaaatctctt	ttctaaaggg	cacatggagg	gtgatatett
1860	tggtgaacaa	cgaacacacc	aatgtctggg	attcacacca	aagggaagcg	gtttggttta
1920	ggaggaatgg	gaaaagttgg	tcaaaaggta	tgcgattgat	aactaaagcc	cagataaaac
1980	tgatagtgca	atgaagcttg	gccaggtatc	gaatgcttta	tcaaagttga	tttacaacaa
2040	caagattaat	aattgcagga	ctttcaagtg	gttgagaggt	ttcttgagct	aaaggcaaag
2100	tcatgttagc	cactttttgg	atagcaaaag	gctgctcatc	tctgctcgac	atacttgtct
2160	ggactatagt	ccctatctaa	gccatatctc	ggtgetteet	gaaggggttg	gagggtctta
2220	gcttgacagt	ttccttactg	ttgagactct	aatggattta	gctcaagtga	actgaagaag
2280	tctgactggc	ctttgtttat	aatatgcact	gaatgatgtc	atgcaatact	aatcaaggga
2340	attgcttgga	gtgcagctgc	cgatcagtct	cagtatgttg	gaggtaaatc	ccaaatggtg
2400			gctgtcatcc			
	9	9	-			

-continued

				-contir	nued		
ctgcatatga	aggcctatga	tagcccagct	gatgggaaaa	gttcgtttca	gattgaaatg	2460	
tcagagatcc	gatctttagt	cagccgtgct	actggtagga	gtcttgttct	cattgatgaa	2520	
atatgtaggg	gcacagaaac	tgcaaaagga	acttgtatag	ctggtagcat	catcgaaagg	2580	
ctcgacgatg	ttggctgcct	aggcatcata	tcaacccatt	tgcatggcat	ttttgacttg	2640	
cctctgtcac	tcggcaatac	tgatttcaaa	gctatgggaa	cagaagttgt	caatgggtgc	2700	
attcagccaa	catggagatt	aatggatggt	atctgtagag	aaagccttgc	ttttcaaaca	2760	
gcaaggaagg	aaggtatgcc	tgacttgata	attaaaagag	cagaggagct	atacagtact	2820	
atgggcagaa	gcaagacgtc	atcaacagtc	caccatggtc	catccgttgc	taagtctaaa	2880	
gcaagtggat	tggttgatat	gcctgatggt	ctgggaaatg	gattagaact	tccatctggt	2940	
gcttttgcac	tgctgcgaaa	ggatgtcgaa	ataattgtga	ccgcaatatg	caaggataaa	3000	
ttgttggatc	tctacaacaa	aagaagcatc	tcagagctgg	ttgaggtggt	ttgtgttact	3060	
gtaggtgcta	gggagcaacc	gccaccttca	actgttggca	ggtccagcat	ctacatagtt	3120	
atcaggcgtg	acaacaagct	ctatgttgga	cagacggatg	atcttgttgg	ccgtcttgct	3180	
gttcatagat	ccaaggaagg	tatgcagggt	gccacaatat	tatatatcgt	ggttcctggc	3240	
aagagcgttg	cgtgccagct	ggagacactt	ctcataaacc	agcttccctc	gaaaggtttt	3300	
aagctcacga	acaaggcaga	tggcaagcat	cggaacttcg	gcatgtctgt	tatctctgga	3360	
gaagccattg	ctgcacactg	a				3381	
<210> SEQ : <211> LENG' <212> TYPE <213> ORGAL	TH: 3520	vinifera					
<400> SEQU	ENCE: 9						
atgtactggc	tgtcaaccaa	aaacgtcgtc	gtttcattcc	ctcgattcta	ctctctcgct	60	
cttcttctcc	gttcccctgc	ctgcaaatac	acttcatttc	gttcttctac	acttctactc	120	
caacagtttg	agaagagccg	atgtctcaac	gaaaggaggg	ttttgaaagg	agctggaaga	180	
atgacaaaaa	atgttatagg	attgcaaaat	gagetagatg	aaaaggatct	ttctcacata	240	
atgtggtgga	aggagaggat	gcaaatgtgt	aaaaagccgt	ccactgtcca	ccttgttaaa	300	
aggcttatat	attccaattt	gctaggagtg	gatcctaact	tgaaaaatgg	gaatctaaaa	360	
gaaggaacgc	tgaactggga	gatgttgcag	ttcaagtcaa	agtttcctcg	tgaagtttta	420	
ctctgcagag	taggggattt	ttatgaagcc	atcggaattg	atgcttgtat	tcttgttgaa	480	
tatgctggtt	tgaatccttt	tggtggtttg	cgctcagaca	gtataccaag	agctggctgc	540	
ccagtcatga	atctacgaca	aactttggat	gacctgacac	gtagcgggta	ttcagtttgc	600	
atagtggagg	aagttcaggg	tccaactcaa	gctcgttctc	gtaaaggtcg	ttttatctct	660	
gggcatgcgc	atccgggtag	tccttatgta	tttggacttg	ttggggttga	tcatgatctt	720	
gattttccag	aaccaatgcc	tgtagttgga	atttctcgtt	ctgcgaaggg	ttattctata	780	
attttagtcc	ttgagactat	gaagacgttt	tcagtagagg	atggtctgac	agaagaggct	840	
ttagttacca	agettegeae	ttgtcactac	catcatttat	tgctgcatac	atctctgaga	900	
cgcaactcct	caggtacttg	tcgttgggga	gaatttggtg	agggaggact	attatgggga	960	
gaatgtagtg	ctagacactt	tgaatggttt	gaaggggatc	ctgtatctca	acttttgttt	1020	
aaggtgaagg	agctctatgg	ttttgatgat	caagttacat	ttagaaatgt	cactgtgtct	1080	
-5 0 00	- 55	5 5	-	3 3-	5 5		

1140

tcagagaaaa gaccccgttc tttacacctt ggcacagcta cacaaattgg tgccatacca

-continued
-continued

acagagggca	taccgtgttt	gttaaaggtg	ttgcttccat	caaattgcac	tggtctacct	1200
cttttgtatg	ttagagatct	tcttctcaac	cctcctgctt	atgagattgc	atccataatt	1260
caagcaacat	gcagactcat	gaacaatgta	acgtgctcga	ttcctgagtt	tacttgtgtt	1320
tcccctgcaa	agcttgtgaa	gctacttgag	cttagggagg	ctaatcatat	tgagttctgc	1380
agaataaaaa	gtgtacttga	tgaaatattg	cagatgcata	gaaactctga	tcttaacaaa	1440
atccttaaat	tattgatgga	tcctacctgg	gtggcaactg	gattgaagat	tgactttgac	1500
acattggtga	acgaatgtga	atggatttca	gctagaattg	gtaaaatgat	ctttcttgat	1560
ggtgaaaatg	atcaaaagat	aagttaccat	cctatcattc	caaatgactt	ttttgaggac	1620
atggaatctc	cttggaaggg	tegtgtgaag	aggatccatg	tagaagaagc	atttgctgaa	1680
gtggaaagag	cagctgaggc	attatcttta	gctatctccg	aagattttct	acctattatt	1740
tcaagaataa	aagctaccac	agccccactt	ggaggtccaa	aaggagaagt	tgtatatgct	1800
cgagagcatg	aagctgtttg	gttcaaggga	aaacgttttg	caccagttgc	atgggcaggt	1860
actccagggg	aagaacaaat	taagcagctt	agacctgcta	tagattcaaa	aggtagaaag	1920
gttggattgg	aatggtttac	cacagtgaag	gtggaggatg	cactaacaag	gtaccatgag	1980
gctggggaca	aggcaaaagc	aagggtcttg	gaattgttga	ggggactttc	tgcggagtta	2040
caaactaaaa	ttaacatcct	tatctttgct	tccatgttgc	ttgtcattgc	aaaggcatta	2100
tttgctcatg	tgagtgaagg	gagaagaagg	aaatgggttt	teceetetet	tgtagagttg	2160
cataggtcta	aggacatgga	acctctggat	ggagctaatt	ggatgaagat	aactggttta	2220
tcaccatatt	ggttggacgt	ggcacaaggc	agtgctgtgc	ataatacagt	tgatatgaaa	2280
tcattgtttc	ttttgacagg	acctaatggg	ggtggtaaat	caagtttgct	tcgatcaatt	2340
tgtgcagccg	cattacttgg	aatatgtgga	tttatggtgc	ctgcagaatc	ggccttgatt	2400
cctcattttg	attctattat	gcttcacatg	aaatcttatg	atagcccagc	tgatggaaaa	2460
agttcatttc	agattgaaat	gtcagagatg	cgatccataa	tcactggagc	cacttcaaga	2520
agcctggtgc	tgatagatga	aatctgccga	ggaacagaaa	cagcaaaggg	gacatgtatt	2580
gctggtagca	tagttgaaac	tcttgataag	attggttgtc	tgggtattgt	atccactcac	2640
ttgcatggta	tatttacctt	gggactgaat	actaagaatg	ctatttgtaa	agcaatggga	2700
actgaatatg	ttgatggcaa	aacaaaaccg	acctggaagt	tgatagatgg	aatctgtaga	2760
gaaagccttg	cctttgaaac	agctcagaag	gagggaattc	ctgaaacaat	tatccgaaga	2820
gcagaagagc	tgtatctttc	aatccattca	aaagacttaa	ttacaggggg	aactatttgt	2880
cctaaaattg	agtcaacaaa	tgaaatggaa	gtcttacata	agaaagttga	gagtgcagtc	2940
accattgttt	gccaaaagaa	gctgaaggag	ctctataagc	agaaaaacac	gtcaaaactt	3000
ccagagataa	actgtgtggc	cattttgcca	ggggaacagc	cgccgccatc	aacaattggt	3060
gcttcaagtg	tgtatgtgtt	gtttagcact	gataagaaac	tttatgttgg	agagacagat	3120
gatcttgaag	gcagagtccg	tgcgcatcga	tcaaaggaag	gaatgcagaa	ggcctcattc	3180
ctttattttg	tggtcccagg	gaagagcttg	gcatgccaac	tcgaaacgct	tctcatcaac	3240
cagetecetg	tccaggggtt	ccaactggtc	aatagagctg	atggtaaaca	tcgaaatttt	3300
ggcacattgg	atcactccgt	ggaagttgtg	accttgcatc	aatgagcctg	cgctccttgc	3360
cacccatttt	gtagaatggt	tccatctttg	aaatatgtac	ttgaatgaca	aaaaccagat	3420
gaaagtggct	gcagcaattt	tggttttttg	atgtacgttg	ctccacttgc	attagtatta	3480

				-0011011	iuea	
tctacctgat	gaaatatgca	ttgatattgc	ttgctctaca			3520
<210 > SEQ : <211 > LENG' <212 > TYPE <213 > ORGAN	TH: 3615	is sativus				
<400> SEQUI	ENCE: 10					
atggaaatat	ccatctatgt	cgatgtggca	ttgtggcggg	aagtatcgga	aaccaagggt	60
tttctgttcc	ggcgacgacg	agttacaaac	accctcctca	tttcaaacca	aaacgcttta	120
aaacttccaa	tcacaacaag	attgaagctc	acaaaccatc	catttttatc	caccgccatg	180
tactgggcgg	caacacgaac	cgttgtttct	gcttcccggt	ggcgttttct	ggctcttttg	240
attcgcttcc	ctccgcgtaa	cttcacctca	gttactcatt	cgccggcatt	tatagaaagg	300
caacagcttg	aaaagttgca	ctgttggaaa	agcagaaaag	gttcaagagg	aagcatcaaa	360
gctgctaaga	agtttaagga	taataatatt	ctccaagaca	ataagtttct	ttctcacatt	420
ttatggtgga	aagagacggt	ggaatcatgc	aagaagccgt	catctgtcca	gctggttaag	480
aggettgaet	tttccaactt	gctaggttta	gatacaaacc	tgaaaaatgg	gagtcttaaa	540
gaaggaactc	ttaactgtga	gattctacag	ttcaaggcaa	agtttcctcg	agaagttttg	600
ctctgtagag	ttggagattt	ttatgaagca	attggaatag	atgcttgcat	acttgtggaa	660
tatgctggtt	taaatccttt	tggaggtcag	cgtatggata	gtattccaaa	agctggttgc	720
cccgttgtga	atcttcgtca	aactttggat	gatctgacac	gcaatgggtt	ctcagtgtgc	780
atagtggaag	aagttcaggg	cccaattcaa	getegttete	gcaaaggacg	ttttatatct	840
gggcatgcac	acccaggcag	tccctatgtt	tttgggcttg	teggggttga	tcacgatctt	900
gactttccag	aaccgatgcc	tgtgattgga	atatetegat	ccgcaagggg	ctattgcatg	960
agccttgtca	tagagaccat	gaagacatat	tcatcagagg	atggtttgac	agaagaggcc	1020
ttagttacta	aactgcgcac	ttgtcaatac	catcatttat	ttcttcacac	gtcattaagg	1080
aacaactcct	caggcacttg	ccgctggggt	gaatttggtg	agggtggccg	gctatggggg	1140
gaatgtaatc	ccagacattt	tgagtggttc	gatggaaagc	ctcttgataa	tcttatttct	1200
aaggttaaag	agctttatgg	tcttgatgat	gaagttacat	ttagaaatgt	tacaatatcg	1260
tcagaaaata	ggccacatcc	gttaactcta	ggaactgcaa	cacagattgg	tgccatacca	1320
acagagggaa	taccttgttt	gctgaaggtt	ttgcttccat	ccaattgtgc	tggccttcct	1380
gcattgtata	tgagggatct	tcttctcaat	cctcctgctt	atgagactgc	atcgactatt	1440
caagctatat	gcaggcttat	gagcaatgtc	acatgtgcaa	ttccagactt	cacttgcttt	1500
cccccagcca	agcttgtgaa	gttattggaa	acgagggagg	cgaatcatat	tgaattctgt	1560
agaatgaaga	atgtacttga	cgaaatatta	caaatgcaca	aaaattgcaa	gctaaacaat	1620
atcctgaaat	tgctgatgga	tcctgcatct	gtggcaactg	ggttgaaaat	tgactatgat	1680
acatttgtca	acgaatgtga	atgggcttcc	agtagagttg	atgaaatgat	ttttcttggt	1740
agtgaaagtg	aaagtgatca	gaaaatcagt	tcttatccta	ttattcctaa	tggtttttc	1800
gaggacatgg	aattttcttg	gaaaggtcgt	gtgaagagga	ttcacattga	agaatcttgt	1860
acagaagttg	aacgggcagc	tgaagcactc	tcccttgcag	ttactgaaga	ttttgtccca	1920
atcatttcta	gaatcagggc	tactaatgca	ccactaggag	gtccaaaggg	agaaatatta	1980
tatgctcggg	accatcaatc	tgtctggttc	aaaggaaaac	ggtttgcacc	atctgtatgg	2040
gctggaagcc	ctggagaagc	agaaattaaa	caactgaaac	ctgctcttga	ttcaaaggga	2100
-	-			-		

-continued

aaaaaagttg gggaggagtg gtttaccacg aagaaggtgg aggattcttt aacaaggtac	2160
caagaggcca ataccaaagc aaaagcaaaa gtagtagatc tgctgaggga actttcttct	2220
gaattgttag ctaaaattaa cgtcctaata tttgcttcca tgctactcat aattgccaag	2280
gcgttatttg ctcatgtgag tgaagggagg aggaggaaat gggtttttcc cacccttgct	2340
gcacccagtg ataggtccaa ggggaaagtt gcgatgaagc tggttggtct atctccctat	2400
tggtttgatg ttgtcgaagg caatgctgtg cagaatacta ttgagatgga atcattattt	2460
cttttgactg gtccaaatgg gggtggaaaa tctagtttgc ttcgatcgat ttgtgctgct	2520
actitigetig ggatatigtigg attitatiggta deggeagagt degeeetgat tecceactic	2580
gactcaatta tgcttcatat gaaatctttt gatagtcctg ctgatggaaa aagttctttt	2640
caggtggaaa tgtcagagat gagatccatt gtcaatagag taacggagag aagtcttgta	2700
cttatcgatg aaatctgtcg tggaacagaa acagcaaaag gaacttgtat tgccgggagc	2760
attattgaag ctcttgataa agcaggttgt cttggcattg tctccactca cttgcatgga	2820
atatttgatt tgcctttaga tacccaaaac attgtgtaca aagcaatggg aactgtttct	2880
gcggaaggac gcacggttcc cacttggaag ttgattagtg gaatatgtcg agagagcctt	2940
gcctttgaaa cagcaaagaa tgaaggaatc tctgaagcta taattcaaag ggctgaagat	3000
ttgtatctct caaattatgc taaagaaggg atttcaggaa aagagacgac agatctgaac	3060
ttttttgttt cttctcatcc aagccttaat ggtaatggca ctggaaaatc caatctcaag	3120
tcaaacggtg tgattgtaaa ggctgatcag ccaaaaacag agacaactag caaaacaggt	3180
gtcttgtgga agaaacttga gagggctatc acaaagatat gccaaaagaa gttgatagag	3240
tttcatagag ataaaaacac attgacacct gctgaaattc aatgtgttct aattgatgca	3300
agagagaagc cacctccatc aacaataggt gcttcgagcg tatatgtgat tcttagaccg	3360
gatggcaaat totatgttgg acagactgat gatctggatg gtagggtcca atcacatcgt	3420
ttaaaggaag gaatgeggga tgetgeatte etttatetta tggtgeetgg gaagagetta	3480
gcttgccaac ttgaaactct tctcatcaat cgacttcctg atcacgggtt ccagctaact	3540
aacgttgctg atggaaagca tcggaatttt ggcacagcca atctcttatc cgacaatgtg	3600
actgtttgct catga	3615
<210> SEQ ID NO 11 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic <400> SEQUENCE: 11	
cgcaggtatc acgaggcaag tgctaagg	28
<210> SEQ ID NO 12 <211> LENGTH: 54 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic	
<pre><400> SEQUENCE: 12 atccccaaac agccaatttc gtccaggatc cccaaacagc caatttcgtc cagg</pre>	54

<210> SEQ ID NO 13

-continued

<211> LENGTH: 961 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 13 gtacgcttct cttaaaaacc cagctctatt cgctgtttag ggttttgtgt aaaatctacg 60 atgettacet gtaategatg gttactegeg tatteacaaa ttetgatggt gtagtttgag 120 tttagctagt gtctttcccc taataatgct ttgttggtat taaccctagt gacactggtc 180 aagtcagatg cagatgagta cactagattt tacttgaatc gaggtttatg agatagttta 240 gttcttcttc aaactttgat cacccatgag gtagtttact ttctcctttg atggttgtaa 300 ccaatggagc tctcgaattt actaattctg atgtgtaatt ctgttaatag acctagaaat gcattgtggg tgttgaatct ctcttgtttg caataagtga atgataatgg tggtctagtc agatggagat gatacatttt attttgcttt atagttgggt gtatgagaat gcttagttct 480 totgggagtg agtttagcac atgattatat atgagatagt ttactttagt ttccctcttt 540 atcattgtgg acctetettg ttaacaaate etgaggetta attetgttat tagtgatagt 600 atctgaagaa gttagagttt agctgagtct taattatttt tttacctcga aatgctttgt 660 tggtaaccct cttgttagca agaactgagt gatacttgtc gagtcagatg cagatgatta 720 qatttaqcac atqaaaqtca ctcttatctc tttccttqta aaqaaaatct ctqatttttc 780 acagaacagt taccgtgtgg cttcttgttt caacttctct tttagtctga ttgatctaat 840 acaagtggtc tctgctgtta atgtttggtt tggtttcctt tttctgccat catcttgttt 900 agaatgcaat tatcaatcaa ctcactgact ggtactatct acttgtgatg acttaatgca 960 961 <210> SEQ ID NO 14 <211> LENGTH: 660 <212> TYPE: DNA <213 > ORGANISM: Gossypium hirsutum <400> SEQUENCE: 14 ggcacgaggt tgctattgct gcaagggaac agccacctcc atcaactatc ggtgcttctt 60 gcgtatatgt catgttcaga cctgataaga aactatacat tggagagacg gatgatcttg 120 atggtcgaat tcgttcgcat cgttcaaagg acgggatgga aaatgcttct ttcctatatt 180 tcacagttcc agggaagagt attgctcgcc aactcgaaac tcttctaatc aaccaactct 240 taagtcaagg cttcccgatc gccaacttgg ctgacggtaa gcatcagaat tttggcacat 300 ccagtctctc atttgacggc ataaccgtag cctaacgagt taaaatgtat atcaatacgt aatttatatc gaaattgaca tagaagtggc ggcagcaatt ttgcctttga tctcggttgc tccacttgct ttgtacatgc atcaccettt taaccaaggg taaagttttc tagtcataat 480 ttaataqcat qtatctatta aqtccatttt qaqqtttata tqaatcaqqt tttcatcatt 540 aattqqttaa attctqttat taqctcctct actttactaa aqttqtaqat ttaqttctta 600 tactttaatt agattattt tactctatac ttttcgaatg ataaaatttt agtcttcatt <210> SEQ ID NO 15 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE:

<223> OTHER INFORMATION: synthetic

-continued

ggttgaggag cctgaatctc tgaagaac	28	
<210> SEQ ID NO 16 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic		
<400> SEQUENCE: 16		
ctcgccagag attcgagata taccgaag	28	
<210> SEQ ID NO 17 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic		
<400> SEQUENCE: 17		
tttttaggaa ttattgagta ttattga	27	
<pre><210 > SEQ ID NO 18 <211 > LENGTH: 24 <212 > TYPE: DNA <213 > ORGANISM: Artificial <220 > FEATURE: <223 > OTHER INFORMATION: synthetic</pre>		
<400> SEQUENCE: 18		
aaataaaaat catacccaca tccc	24	
<210> SEQ ID NO 19 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic <400> SEQUENCE: 19		
tgttgaatta ttaagatatt taagat	26	
<210> SEQ ID NO 20 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic		
<400> SEQUENCE: 20		
tcaaccaata aaaattacca tctac	25	
<210> SEQ ID NO 21 <211> LENGTH: 30 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic		
<400> SEQUENCE: 21		
taagtttttt ttaagagttt gtatttgtat	30	
<210> SEQ ID NO 22 <211> LENGTH: 25 <212> TYPE: DNA		

<212> TYPE: DNA

-continued

<pre><213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic</pre>		
<400> SEQUENCE: 22		
taaaaataat caaaacctaa cttac	25	
<210> SEQ ID NO 23 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic		
<400> SEQUENCE: 23		
attgtttatt aaatgttttt tagtt	25	
<210> SEQ ID NO 24 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic		
<400> SEQUENCE: 24		
ctaacaattc ccaaaaccct tatc	24	
<210> SEQ ID NO 25 <211> LENGTH: 24 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic		
<400> SEQUENCE: 25		
gtgtactcat ctggatctgt attg	24	
<210> SEQ ID NO 26 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic <400> SEQUENCE: 26		
ggttgaggag cetgaatete tgaac	25	
<210> SEQ ID NO 27 <211> LENGTH: 250 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana		
<400> SEQUENCE: 27		
cagttcccaa agcccttgtc aaacatcgtc caacacgtat caccactcga caacataaag	60	
acagacggtt caactacacc gcgctcgcgc ctcaccttga aaatctcatc actctttagc	120	
aaacgcgaaa accccttatt aagtaacttt agtttccaat actcgaaacg cggcacgcgt	180	
gcgagtatct cgacctctaa ctcgtatacg agctgaggaa catttagtaa acaataatct	240	
gcatcettag	250	
<210> SEQ ID NO 28 <211> LENGTH: 234 <212> TYPE: DNA		

<213 > ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 28
caattcccaa aacccttatc aaacatcatc caacacatat caccactcga caacataaaa 60
acaaacaatt caactacacc acactcacac ctcaccttaa aaatctcatc attctttaac 120
aaacacaaaa accccttatt aaataacttt aatttccaat actcaaaaca caacacacat 180
acaaatatct caacctctaa ctcatataca aactaaaaaa catttaataa acaa 234
<210> SEQ ID NO 29 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 29
caattcccaa aaccettate aaacatcate caacacatat caccactcaa caacataaaa 60
acaaacaatt caactacacc acactcacac ctcaccttaa aaatctcatc actctttaac 120
aaacacaaaa accccttatt aaataacttt aatttccaat actcgaaaca cgacacacat 180
acaaatatct caacctctaa ctcatataca aactaaaaaa catttaataa acaa 234
<210> SEQ ID NO 30 <211> LENGTH: 233 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 30
caattcccaa aacccttatc aaacatcatc caacacatat caccactcaa caacataaaa 60
acaaacaatt caactacacc acactcacac ctcaccttaa aaatctcatc actctttaac 120
aaacacaaaa accccttatt aaataacttt aatttccaat actcaaaaca caacacacat 180
acaaatatct caacctctaa tcatatacaa actaaaaaac atttaataaa caa 233
<210> SEQ ID NO 31 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 31
caattcccaa aaccettate aaacatcate caacacatat caccactega caacataaaa 60
acaaacaatt caactacacc acattcacac ctcaccttaa aaatctcatc actctttaac 120
aaacacaaaa acccettatt aaataacttt aattteeaat acteaaaaca caacacaat 180
acaaatatct caacctctaa ctcatataca aactaaaaaa catttaataa acaa 234
<210> SEQ ID NO 32 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 32
caattcccag gacccttatc aaacatcatc caacacatat caccactcaa caacataaaa 60
acaaacaatt caactacacc acactcacac ctcaccttaa aaatctcatc actctttaac 120
aaacacaaaa accccttatt aaataacttt aatttccaat actcaaaaaca caacacat 180
acaaatatct caacctctaa ctcatataca aactaaaaaa catttaataa acaa 234
<210> SEQ ID NO 33

<210> SEQ ID NO 33 <211> LENGTH: 234 <212> TYPE: DNA

Concentraca
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 33
caattcccaa aacccttatc aaacatcatc caacacatat caccactcga caacataaaa 60
acaaacaatt caactacacc acactcacac ctcaccttaa aaatctcatc actctttaac 120
aaacacaaaa accccttatt aaataacttt aatttccaat actcaaaaca caacacacat 180
acaaatatct caacctctaa ctcatataca aactaaaaaa catttaataa acaa 234
<210> SEQ ID NO 34 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (98)(98) <223> OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 34
caattcccaa aacccttatc aaacatcatc caacacatat caccactcaa caacataaaa 60
acaaacaatt caactacacc acactcacac ctcacctnaa aaatctcatc actctttaac 120
aaacacaaaa accccttatt aaataacttt aatttccaat actcaaaaca caacacacat 180
acaaatatct caacctctaa ctcatataca aactaaaaaa catttaataa acaa 234
<210> SEQ ID NO 35 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 35
caattcccaa aacccttatc aaacatcatc caacacatat caccactcga caacataaaa 60
acaaacaatt caactacacc acactcacac ctcaccttaa aaatctcatc actctttaac 120
aaacacgaaa accccttatt aaataacttt aatttccaat actcaaaaca caacacacat 180
acaaatatct caacctctaa ctcatataca aactaaaaaa catttaataa acaa 234
<210> SEQ ID NO 36 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 36
caattcccaa aacccttatc aaacatcatc caacacatat caccactcga caacataaaa 60
acaaacaatt caactacacc acactcacac ctcaccttaa aaatctcatc actctttaac 120
aaacacaaaa accccttatt aaataacttt aatttccaat actcaaaaca caacacacat 180
acaaatatct caacctctaa ctcatataca aactaaaaaa catttaataa acaa 234
<210> SEQ ID NO 37 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 37
caattcccaa aacccttatc aaacatcatc caacacatat caccactcga caacataaaa 60
acaaacaatt caactacacc acactcacac ctcaccttaa aaatctcatc actctttaac 120
aaacacaaaa accccttatt aaataacttt aatttccaat actcaaaaca caacacacat 180
acaaatatct caacctctaa ctcatataca aactaaaaaa catttaataa acaa 234

<210> SEQ ID NO 38 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 38	
caatteecaa aaccettate aaacateate caacacatat caccaeteaa caacataaaa	60
acaaacaatt caactacacc acactcacac ctcaccttaa aaatctcatc actctttaac	120
aaacacaaaa accccttatt aaataacttt aatttccaat actcaaaaca caacacacat	180
acaaatatet caacetetaa eteatataea aactaaaaaa eatttaataa acaa	234
<210> SEQ ID NO 39 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 39	
caattcccaa aacccttatc aaacatcatc caacacatat caccactcga caacataaaa	60
acaaacaatt caactacacc acactcacac ctcaccttaa aaatctcatc actctttaac	120
aaacacaaaa accccttatt aaataacttt aatttccaat actcaaaaca caacacacat	180
acaaatatot caacototaa otoatataca aactaaaaaa catttaataa acaa	234
<210> SEQ ID NO 40 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 40	
caattoccaa aaccottato aaacatogto caacacgtat caccactoga caacataaaa	60
caatteecaa aaceettate aaacategte caacaegtat caecaetega caacataaaa	60 120
acaaacggtt caactacacc gcactcgcgc ctcaccttaa aaatctcatc gctctttaac	
	120
acaaacggtt caactacacc gcactcgcgc ctcaccttaa aaatctcatc gctctttaac	120 180
acaaacggtt caactacacc gcactcgcgc ctcaccttaa aaatctcatc gctctttaac aaacacgaaa accccttatt aaataacttt aatttccaat actcgaaacg cgacacgcgt acgaatatct cgacctctaa ctcgtatacg aactaaaaaa catttaataa acaa <210> SEQ ID NO 41 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	120 180
acaaacggtt caactacacc gcactcgcgc ctcaccttaa aaatctcatc gctctttaac aaacacgaaa accccttatt aaataacttt aatttccaat actcgaaacg cgacacgcgt acgaatatct cgacctctaa ctcgtatacg aactaaaaaa catttaataa acaa <210> SEQ ID NO 41 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 41	120 180 234
acaaacggtt caactacacc gcactcgcgc ctcaccttaa aaatctcatc gctctttaac aaacacgaaa accccttatt aaataacttt aatttccaat actcgaaacg cgacacgcgt acgaatatct cgacctctaa ctcgtatacg aactaaaaaa catttaataa acaa <210> SEQ ID NO 41 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 41 caattcccaa aacccttatc aaacatcgtc caacacgtat caccactcga caacataaaa	120 180 234
acaaacggtt caactacacc gcactcgcgc ctcaccttaa aaatctcatc gctctttaac aaacacgaaa accccttatt aaataacttt aatttccaat actcgaaacg cgacacgcgt acgaatatct cgacctctaa ctcgtatacg aactaaaaaa catttaataa acaa <210 > SEQ ID NO 41 <211 > LENGTH: 234 <212 > TYPE: DNA <213 > ORGANISM: Arabidopsis thaliana <400 > SEQUENCE: 41 caattcccaa aacccttatc aaacatcgtc caacacgtat caccactcga caacataaaa acaaacgatt caactacacc gcactcgcgc ctcaccttaa aaatctcatc actctttaac	120 180 234 60 120
acaaacggtt caactacacc gcactcgcgc ctcaccttaa aaatctcatc gctctttaac aaacacgaaa accccttatt aaataacttt aatttccaat actcgaaacg cgacacgcgt acgaatatct cgacctctaa ctcgtatacg aactaaaaaa catttaataa acaa <210 > SEQ ID NO 41 <211 > LENGTH: 234 <212 > TYPE: DNA <213 > ORGANISM: Arabidopsis thaliana <400 > SEQUENCE: 41 caattcccaa aacccttatc aaacatcgtc caacacgtat caccactcga caacataaaa acaaacgatt caactacacc gcactcgcgc ctcaccttaa aaatctcatc actctttaac aaacgcggaa accccttatt aaataacttt aatttccaat actcaaaacg cgacacgcgt	120 180 234 60 120
acaaacggtt caactacacc gcactcgcgc ctcaccttaa aaatctcatc gctctttaac aaacacgaaa accccttatt aaataacttt aatttccaat actcgaaacg cgacacgcgt acgaatatct cgacctctaa ctcgtatacg aactaaaaaa catttaataa acaa <210> SEQ ID NO 41 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 41 caattcccaa aacccttatc aaacatcgtc caacacgtat caccactcga caacataaaa acaaacgatt caactacacc gcactcgcgc ctcaccttaa aaatctcatc actctttaac aaacgcggaa accccttatt aaataacttt aatttccaat actcaaaacg cgacacgcgt acaaatatct cgacctctaa ctcatatacg aactaaaaaa catttaataa acaa <210> SEQ ID NO 42 <211> LENGTH: 234 <212> TYPE: DNA	120 180 234 60 120
acaaacggtt caactacacc gcactcgcgc ctcaccttaa aaatctcatc gctctttaac aaacacgaaa accccttatt aaataacttt aatttccaat actcgaaacg cgacacgcgt acgaatatct cgacctctaa ctcgtatacg aactaaaaaa catttaataa acaa <210> SEQ ID NO 41 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana <400> SEQUENCE: 41 caattcccaa aacccttatc aaacatcgtc caacacgtat caccactcga caacataaaa acaaacgatt caactacacc gcactcgcgc ctcaccttaa aaatctcatc actctttaac aaacgcggaa accccttatt aaataacttt aatttccaat actcaaaacg cgacacgcgt acaaatatct cgacctctaa ctcatatacg aactaaaaaa catttaataa acaa <210> SEQ ID NO 42 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	120 180 234 60 120
acaaacggtt caactacacc gcactcgcgc ctcaccttaa aaatctcatc gctctttaac aaacacgaaa accccttatt aaataacttt aatttccaat actcgaaacg cgacacgcgt acgaatatct cgacctctaa ctcgtatacg aactaaaaaa catttaataa acaa <210 > SEQ ID NO 41 <211 > LENGTH: 234 <212 > TYPE: DNA <213 > ORGANISM: Arabidopsis thaliana <400 > SEQUENCE: 41 caattcccaa aacccttatc aaacatcgtc caacacgtat caccactcga caacataaaa acaaacgatt caactacacc gcactcgcgc ctcaccttaa aaatctcatc actctttaac aaacgcggaa accccttatt aaataacttt aatttccaat actcaaaacg cgacacgcgt acaaatatct cgacctctaa ctcatatacg aactaaaaaa catttaataa acaa <210 > SEQ ID NO 42 <211 > LENGTH: 234 <212 > TYPE: DNA <213 > ORGANISM: Arabidopsis thaliana <400 > SEQUENCE: 42	120 180 234 60 120 180 234

acgaatatet caacetetaa etegtataeg aactaaaaaa catttaataa acaa	234
<210> SEQ ID NO 43 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 43	
caattcccaa aaccettate aaacategte caacacgtat caccactega caacataaaa	60
acaaacgatt caactacacc gegetegege eteaecttaa aaateteate actetttaac	120
aaacacgaaa accccttatt aaataacttt aatttccaat actcgaaacg cgacacgcgt	180
acgaatatet egacetetaa etegtataeg aaetaaaaaa eatttaataa acaa	234
<210> SEQ ID NO 44 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 44	
caattcccaa aaccettate aaacategte caacacatat caccactega caacataaaa	60
acaaacgatt caactacacc gcgctcgcgc ctcaccttaa aaatctcatc actctttaac	120
aaacgcgaaa accccttatt aaataacttt aatttccaat actcgaaacg cgacacacgt	180
acgaatatot cgacototaa otogtataog aactaaaaaa catttaataa acaa	234
<210> SEQ ID NO 45 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 45	
caattcccaa aaccettate aaacategte caacacgtat caccactega caacataaaa	60
acaaacaatt caactacacc gcgctcgcgc ctcaccttaa aaatctcatc actctttaac	120
aaacgcgaaa accccttatt aaataacttt aatttccaat actcgaaaca cgacacgcgt	180
acgaatatot ogacototaa otogtataog aactaaaaaa catttaataa acaa	234
<210> SEQ ID NO 46 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 46	
caattcccaa aaccettate aaacategte caacaegtat caccaetega caacataaaa	60
acaaacgatt caactacace gegetegege etcacettaa aaateteate actetttaae	120
aaacgcgaaa acccettatt aaataacttt aattteeaat actegaaacg egacacaegt	180
acaaatatet egacetetaa etegtataeg aactaaaaaa catttaataa acaa	234
<210> SEQ ID NO 47 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 47	
caattcccaa aaccettate aaacategte caacacgtat caccactega caacataaaa	60
acaaacgatt caactacace gegettgege etcaeettaa aaateteate aetetttaae	120
	180

acgaatatet egacetetaa eteatataeg a	aactaaaaaa	catttaataa	acaa	234
<210> SEQ ID NO 48 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thalia	ana			
<400> SEQUENCE: 48				
caatteecaa aaceettate aaacategte	caacacgtat	caccactcga	caacataaaa	60
acaaacgatt caactacacc gcgctcgcgc	ctcaccttaa	aaatctcatc	actctttaac	120
aaacgcgaaa accccttatt aaataacttt a	aatttccaat	actcgaaacg	cgacacgcgt	180
acgaatatet egacetetaa etegtataeg a	aactaaaaaa	catttaataa	acaa	234
<210> SEQ ID NO 49 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thalia	ana			
<400> SEQUENCE: 49				
caattcccaa aacccttatc aaacatcgtc	caacacatat	caccactcga	caacataaaa	60
acaaacgatt caactacacc gcgctcgcgc	ctcaccttaa	aaatctcatc	actctttgac	120
aaacacaaaa accccttatt aaataacttt a	aatttccaat	actcaaaacg	cgacacgcgt	180
acgaatatet caacetetaa etegtataeg	aactaaaaaa	catttaataa	acaa	234
<210> SEQ ID NO 50 <211> LENGTH: 234 <212> TYPE: DNA <213> ORGANISM: Arabidopsis thalia	ana			
<400> SEQUENCE: 50				
caattcccaa aaccettate aaacategte (_	_		60
acaaacgatt caactacacc gcactcgcgc				120
aaacgcgaaa accccttatt aaataacttt a				180
acgaatatet egacetetaa eteatataea a	aactaaaaaa	Catttaataa	acaa	234
<210> SEQ ID NO 51 <211> LENGTH: 3369 <212> TYPE: DNA <213> ORGANISM: Brassica rapa				
<400> SEQUENCE: 51				
atgcactgga ttgccaccag aaacgccgtc	gtttegetee	ctagatggcg	tteettegee	60
ttcctcttcc gctcgccatt tcgcacccac	tcttccctca	aaccctcccc	acttcttcta	120
cttaatacaa ggtactctga gaggagatac	tgtttaggag	atggaaagtc	tgtgaaagga	180
atcactacgg cttcttctaa gaaagttaag	accaagtcta	ctgatgttct	cactgacaaa	240
gatetetete atttgetetg gtggaaggag	agattgcaga	catgtaagaa	accatctact	300
cttcaactta tcgaaaggct tatgtacacc	aatctacttg	gtttggaccc	cagcttgagg	360
aatggaagto ttaaagacgg aaacctcaac	tgggagatgt	tgcagtttaa	gtcaaggttt	420
ccacgtgaag ttttgctctg cagagttgga (gacttctatg	aggctattgg	aatagatgct	480
tgtatactcg ttgaatatgc tggtttaaat	ccttttggtg	gtcttcgttc	agatagtgtt	540
ccaaaggetg getgeecagt tgtgaatett	agacaaactt	tggatgacct	aacacgcaat	600

ggtttttcag	tgtgtattgt	ggaagaaatt	caggggccaa	caccagcacg	ttctcgtaaa	660	
ggtcgattca	tttcagggca	tgcacatcca	ggaagteett	atgtctatgg	gctcgttggt	720	
gttgaccatg	atcttgactt	teeggageet	atgcctgtgg	ttgggatatc	tcgttcagca	780	
aggggctact	gtatgatatc	tatcttcgag	actatgaaag	catattcact	agatgatggt	840	
ctaacagaag	aagctctggt	caccaagctc	cgcacccgtc	gctgtcatca	tcttttctta	900	
catgcatcat	tgagacacaa	tgcatcagga	acatgccggt	ggggagagtt	tggagaaggg	960	
ggtctcctct	ggggagaatg	tagtggcaga	aattttgaat	ggtttgaagg	agatactctt	1020	
tccgagctct	taacaaaggt	cagagatgtt	tatggtcttg	atgatgaagt	ttcctttaga	1080	
aatgtcaatg	tacctttaga	aaaccggcca	cgtcctttgc	atcttggaac	ggctacacaa	1140	
attggtgcct	tacctactga	aggaatacct	tgtttgttga	aggtgctact	tccatctacg	1200	
tgcagtggcc	tgccttcttt	gtatctccgg	gatcttcttc	taaaccctcc	tgcttatgat	1260	
attgctctga	aaatccaaga	aacgtgcaag	ctcatgagca	caataacatg	ctcagttccg	1320	
gagtttacct	gtgtttcatc	tgctaagctt	gtgaagette	ttgaacagcg	ggaagccaac	1380	
tacattgagt	tctgccggat	aaaaaatgtg	cttgatgaag	tattacacat	gcacagacat	1440	
cctgagcttg	tggaaatact	gaagttattg	atggaaccta	cttgggtggc	tactggtttg	1500	
aagattgact	ttgaaacttt	tgtcaatgaa	tgtcattggg	cttctgattc	aattggtgaa	1560	
atgatctcat	tagatgacga	tgaaagtcat	cagaacgtta	gtaaatgtgc	taatgtcccg	1620	
aacgagttct	tttacgatat	ggagtettea	tggcgtggtc	gcgttaaggg	aatccatata	1680	
gaggaagaaa	tcacacaagt	ggccaaatcg	gcagaggctt	tatctttagc	ggtaactgaa	1740	
gatttccacc	ctattatatc	aagaatcaag	gctatggctg	catcacttgg	tggctcaaag	1800	
ggagaaattg	tgtatgcaaa	agaacatgag	tctgtttggt	tcaaagggaa	acggtttacc	1860	
ccatctgtat	ggggtggtac	tgctggggaa	gaacaaatta	aacagctgaa	acctgctttt	1920	
gactccaaag	ggaaaaaggt	tggagaagaa	tggtttacaa	ctcaaaaggt	ggaaactgct	1980	
ttagtcagat	atcatgaagc	tagtgagaac	gcaaatgccc	gggtcttgga	gcttttgagg	2040	
gaattatctg	ctaaacttca	aacaaaaata	aacgttcttg	tatttgcatc	tatgcttctc	2100	
gtcattgcaa	aagcattatt	ttctcatgct	tgtgaaggga	gaagacgaaa	gtgggttttt	2160	
ccaactcttg	ttggtttcag	tacagatgag	gccgcaaatc	cattagatgg	tggtgccact	2220	
cgaatgaagc	tgactgggct	atcaccttat	tggtttgatg	tagettetgg	aactgctgtt	2280	
cacaatacgg	tcgacatgca	atcactgttt	cttctaaccg	gacctaacgg	tggtggtaaa	2340	
tcaagtttgc	tcagatcgat	atgcgcagct	getttgettg	gaatctgtgg	ttttatggtt	2400	
ccagctgaat	cagcttatat	ccctcacttc	gattccatca	tgcttcatat	gaaatcttat	2460	
gacagtcctg	tagatgggaa	gagttctttt	caggtggaaa	tgtcggagat	acggtctatt	2520	
gtaagccagg	ctacttcaag	aagcctagtg	cttatagatg	agatctgcag	agggacagag	2580	
acagctaaag	gcacatgtat	tgctggtagt	gtgatcgaga	gtcttgacgc	aagtggttgc	2640	
ttgggtattg	tgtctacaca	tctccatgga	atcttcgatt	tgcctcttac	ggccaaaaac	2700	
gtcacgtata	aagcaatggg	agcagagaat	gtggaagggc	aaacaaaacc	aacatggaaa	2760	
ctgacagatg	gagtttgcag	agagagtctt	gcgtttgaaa	cagctaagag	agaaggtgtt	2820	
ccggagacaa	ttatccaaag	agccgaagct	ctttacatct	ccgtttatgc	caaagacgca	2880	
		aaacaaaacg				2940	
		cttggagaag				3000	
- cagccaygt	yayayaay	Jugaay	Jacceyyeaa	gocaccct	-uugueetge	2000	

```
gggataaaga tgaatgagcc tgtaggttta gaatgtcttt caataggtgc tcgagagctt
                                                                    3060
ccacctccat ctacagttgg ttcatcatgc gtgtatgtga tgaagagacc agataagaga
                                                                    3120
ttgtacattg gacagacgga tgatcttgaa ggaagaatac gtgcgcatag ggcaaaggaa
                                                                     3180
ggactgcaag ggtcaagttt cctatacctt gtggtacaag gtaagagtat ggcttgtcag
                                                                     3240
ctagagaccc ttttgattaa ccagctccat gagcaaggct actctctagc taacttagcc
                                                                     3300
gatggaaagc accgcaattt tgggacgtca tcaagcttga ctgcgtcaga tgtagtcagt
                                                                    3360
                                                                     3369
atctcctaq
<210> SEQ ID NO 52
<211> LENGTH: 3768
<212> TYPE: DNA
<213 > ORGANISM: Triticum aestivum
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (3557)..(3557)
<223 > OTHER INFORMATION: n is a, c, g, or t
<400> SEQUENCE: 52
actcagatta gaaatgctga gagagcctta cctggtaaaa atgaagatac ctcaaatgag
                                                                       60
caqccaaqtq catcttcccc tqtacqqtac aacqqcaaat ataqcaqaqq aactqtqtta
                                                                      120
tttgcagaac atagcacgga taccactccg ccacaggagc cactgaagtt ttctgcaagg
                                                                      180
tettecacag atgaatttgt taaagcaage aegetgttee etgaacttgg tteagateaa
                                                                      240
actetgette aagagtgtee gaagaagtta teeteagagt geeceageaa eeagtaegtt
                                                                      300
caagetaatt cagtgtttga ageatttgat gtacaaactc cgtcccagga tccgttaaag
                                                                      360
agaatetttt etgggeettt teatggagea gatacaeett taccagagta tegtteatat
                                                                      420
ccaattcctt tgcagcatcc atcgaaaaat ttgtcatcgg gctcttctag tggtgaatac
                                                                      480
cttagagcag tgacaccgct tggacttgat tcgaatgata ctcccacagc aaaacactca
                                                                      540
aagaagctat tctctgggtc ttcagaccat tcatacatta aagcaactaa tttgtttccg
                                                                      600
gaatttgatt caaatggaac tccgctgcag aaccactcga ataagttctc agtatctatg
                                                                      660
aatggtaagc atattggagc agctgctaca ctgtttccag aacttgattc tgttcttctg
                                                                      720
aaaccagaaa ctccagtgac acgagcagtg gctcctcgcg ggaagagagt tcaacaggat
                                                                      780
caacgcatga ctgccaataa cagccagtct cctttgtggg gttcaaataa gaaggtgaaa
                                                                      840
tcagctcatt gttctccacc tgggaaaatg gttcatgatg aaatggctga aagtgcacgt
                                                                      900
agtaaatttg aatggctgaa tcctttgaat atcagggatg caaataaaag gcggccagat
gacccacttt atgacaagag aactcttttt attccacctg atgcactgag aaagatgtca
                                                                    1020
                                                                     1080
acateteaaa aqeaataetq qtetattaaq tqeaaatata tqqatqttet cetettette
aaagtgggga aattttatga gctctatgaa gtagatgctg agatcggcca aaaggaactt
                                                                    1140
gattggaaaa tgactattag tggggttgga aaatgccgac aggttggtat ttcagagagt
                                                                    1200
gggattgacg atgctgttga aaagctttta gctcggggat ataaagttgg aaggatagaa
                                                                     1260
caaatggaat ctgcagcaca ggcgaaatct agaggaccaa attcagttat cgaaagaaag
                                                                    1320
ttagctcatg tatccacacc gtcaactgca gctgacagca atatagggcc tgatgctgtt
                                                                    1380
catcttcttg cattgaaaga ggttactcta gcttctaatg gttctcggct ctacggattt
                                                                     1440
gettttetag attatgetge acttaaaate tgggttggtt caetteaaga tgatgatteg
                                                                    1500
tetgeagett tgggggettt getggtgeag gttteeeega gggagataat etatgaatee
                                                                     1560
```

-continued

tcaggcctct caagagaaag tcgtaaatca atgataaaat atgcctcagc aggctctgtg	1620
aaaatgcaac tgaccccact acctgggaca gatttctctg atgcctcaca aattcaaatg	1680
ctagtacatt ctaaaggata ctttaaagca tcaacagatt cttggttatc tgcattggat	1740
tattcagtga atcgagatgc agttatcttt gcacttggtg gacttattgg tcatttgact	1800
agacttatgc tagacgatgc tctaaaaaat ggggaagtct taccttacaa tgtgtaccaa	1860
acttgtttaa ggatggatgg tcagactctt gtgaacctgg agattttcgg caataacttt	1920
gatggtggct catcaggtac tetgtacaag caceteaate aetgeataac egeatetggt	1980
aagcggcttt taagaagatg gatatgccat ccactaaaag atgtcgatgc tataaataga	2040
aggettgatg ttgttgaggg ttteateeag eattgtgggg taggetetat taeaetttat	2100
tatctccgga aaattcctga ccttgagagg ttacttgggc gaatcagatc tactgttggg	2160
ctaacatctg ctgtcctgtt gccttttgtt ggtgaaaaga tattaaagag gcggattaaa	2220
atgtttggca tgcttatcaa gggcctccgg gttggaattg acttattaag tgccttgcgt	2280
agagatgace atggeatece agegetgtea aaateagttg atatteeaac eetgagttet	2340
cttgatgaat tagttcatca gtttgaggag gatatacaca atgactttga acagtaccag	2400
gatcatgata tcaaagacgg tgatgctacc accttggcta atttagtgga acattttgtt	2460
ggaaaagcta ccgaatggtc tttggtaatc aatgccatca gcactgttga tgtccttagg	2520
teetttgeag caatggeatt gteateattt ggeaceatgt geagaceatg tattetgttg	2580
aaagacaaat cgcctatact tcggatgaag ggtctatggc atccatatgc ttttgcagaa	2640
agtggaactg ggcttgtacc aaacgatttg tctcttggcc aggatttatc gggtcataat	2700
cgctttgcat tgttgttgac tggtccaaat atgggaggaa aatctacaat aatgcgcgct	2760
acctgcttgg ctatcgtgct tgcccagctt ggctgttatg tcccctgcat atcatgtgaa	2820
ttgaccettg cagactecat etttacaegg etaggegeaa eggateggat tatgtetgga	2880
gaaagtactt ttcttgtcga atgtagtgag actgcatctg ttcttcagaa tgcaactgag	2940
gattetettg tettgettga tgaacttgge agaggaacta geacatttga tggataegeg	3000
attgcatatg cagtattccg ccacctggtg gaacaggtgc gatgccgtct gctctttgcc	3060
acceactace acceteteae caaggagtte geeteecace eccaegtgag eeteeageae	3120
atggcctgca tgctgaggcc aaggagcggc ggcaacggcg agatggagct caccttcctc	3180
taccgtcttg tgtcaggcgc ctctccggag agctacggcc tgcaggtcgc cacgatggcg	3240
gggatcccaa agtccatagt ggagaaggcg gcggtcgcgg gcgagatgat gaagtcgagg	3300
ategeaggga actteaggte gagegaaggg egageggagt tetecaceet eeacgaggae	3360
tggctgcaga cgatcctggc gatcggcggc gtcaaggacg cgcacctgga cgaggacacc	3420
atggacacga tgttctgcgt cgcccaggag ctcaagtctc atttcaggaa aggaggaagc	3480
tgagcgctga gaagtcgcca ccggtaatta tgcgtggcac cattagatgc aggtagtctg	3540
aaggaggaag atgageneeg agaaagtege egeteaceat taateateag tgttttaate	3600
cgtcccagtc gacggetttg tatatagtta cctcgcgttt gtaatcacgc aagcgcacct	3660
gggcctgagt tcatctgaac tgtcaaaaac ttcatctcgt agtttgtaat cacatgcaca	3720
ttcctagtga ttagtcgaga gtttcaaaaa aaaaaaaaa aaaaaaaa	3768

110

What is claimed is:

- 1. A method for producing a plant exhibiting improved yield comprising the steps of:
 - a. suppressing expression of endogenous MSH1 gene(s) in a plant or plant cell to obtain a first parental plant, 5 wherein suppression of MSH1 expression is effected with: (i) a transgene comprising a polynucleotide of at least 19 nucleotides in length and having at least 90% sequence identity to the endogenous MSH1 gene(s) of the plant or plant cell; (ii) a mutation in the endogenous MSH1 gene(s); or (iii) a nucleic acid of at least 19 nucleotides in length and having at least 90% sequence identity to the endogenous MSH1 gene(s);
 - b. selfing the first parental plant or crossing the first parental plant to a second parental plant;
 - c. recovering progeny plants or a progeny plant line from the self or cross of the first parental plant of step (b) wherein MSH1 function is restored;

and,

- d. selecting a progeny plant or a progeny plant line from 20 a recovered progeny plant or plant line of step (c) or from a self or outcross of a recovered progeny plant or plant line of step (c) wherein the selected progeny plant or plant line exhibits improved yield in comparison to a control plant, wherein said improved yield is associated with one or more epigenetic changes in the nucleus of the progeny plant cells relative to the corresponding parental chromosomal loci and is heritable.
- 2. The method of claim 1, wherein at least one of said epigenetic changes is methylation of chromosomal DNA.
- 3. The method of claim 1, wherein said method further comprises the step of producing seed by: i) selfing the selected progeny plant or plant line of step (d), ii) outcrossing the selected progeny plant or plant line of step (d) or, iii) both selfing and outcrossing the selected progeny ³⁵ plant or plant line of step (d).
- **4**. The method of claim **3**, wherein said method further comprises the step of assaying said seed or plants grown from said seed for the presence of improved yield.
- **5**. The method of claim **1**, wherein said first parental plant ⁴⁰ or plant cell comprises a mutation or a transgene that can suppress expression of MSH1.
- 6. The method of claim 1, wherein said first parental plant or plant cell is obtained by crossing a female plant with a

112

distinct male plant, wherein at least one of said female or male plants comprise a mutation or a transgene that suppresses expression of the endogenous MSH1 gene of said parental plant(s), and wherein said plants were isogenic inbred lines prior to introduction of said transgene.

- 7. The method of claim 1, wherein said first parental plant or plant cell was isogenic to said second parental plant prior to suppression of MSH1 in said first parental plant or plant cell.
- **8**. The method of claim **1**, wherein said improved yield is not caused by substoichiometric shifting (SSS) in mitochondria of said progeny plant.
- 9. The method of claim 1, wherein said selected progeny plant or plant line in step (d) exhibit an improvement in yield in comparison to a control plant that had not been subjected to suppression of MSH1 expression but was otherwise isogenic to said first parental plant or plant cell.
- 10. The method of claim 1, wherein said plant is a crop plant is selected from the group consisting of corn, soybean, cotton, canola, wheat, rice, tomato, tobacco, millet, potato, and sorghum.
- 11. The method of claim 10, wherein said crop plant is sorghum and said yield improvement comprises increased panicle length, increased panicle weight, increased dry biomass, and combinations thereof.
- 12. The method of claim 1, wherein MSH1 had not been suppressed in said second parental plant.
- 13. The method of claim 1, wherein said first parental plant or plant cell is obtained by crossing a female plant with a distinct male plant, wherein at least one of said female or male plants comprise a mutation or a transgene that suppresses expression of the endogenous MSH 1 gene of said parental plant(s), and wherein said plants were isogenic lines prior to introduction of said transgene.
- 14. The method of claim 1, wherein suppression of MSH1 expression is effected with a transgene comprising an MSH1 gene sequence or fragment thereof having at least 18 contiguous nucleotides of sequence identity to the endogenous MSH1 gene(s), a mutation in the endogenous MSH1 gene(s), or a nucleic acid comprising an MSH1 gene sequence or fragment thereof having at least 18 contiguous nucleotides of sequence identity to the endogenous MSH1 gene(s).

ne ne ne ne n